# Übungen zur Vorlesung <br> Einführung in das Programmieren für TM 

## Serie 4

Aufgabe 4.1. Write a function radian, which, given the magnitude of an angle $\theta \in \mathbb{R}^{+}$measured in degrees, computes the measure in radians. The computed value $\psi$ must be in reduced form, i.e., $\psi \in[0,2 \pi)$. Save your source code as radian.c into the directory serie04.

Aufgabe 4.2. Write a function rounding, which, given $x \in \mathbb{R}^{+}$, computes the number $n \in \mathbb{N}$ which is closest to $x$. If $x$ is exactly in the middle between two integers $n$ and $n+1$, the function chooses the biggest one, i.e., $n+1$. Then, write a main program which reads the number $x$ from the keyboard, calls the function and displays the rounded value. Save your source code as rounding.c into the directory serie04.

Aufgabe 4.3. Write a function minabs that, given two numbers $x, y \in \mathbb{R}$, returns the one whose absolute value is smaller. Then, write a main program, which reads $x$ and $y$ from the keyboard and calls the function. Save your source code as minabs.c into the directory serie04.

Aufgabe 4.4. Write a void-function vectorproduct, which, given two vectors $\mathbf{u}=(a, b, c)^{T}$ and $\mathbf{v}=$ $(x, y, z)^{T}$, computes the vector product $\mathbf{w}=\mathbf{u} \times \mathbf{v}$ defined by

$$
\begin{aligned}
& w_{1}=b z-c y \\
& w_{2}=c x-a z \\
& w_{3}=a y-b x .
\end{aligned}
$$

Then, write a main program which reads the vectors $\mathbf{u}, \mathbf{v}$ from the keyboard, calls the function and displays the vector product. Save your source code as vectorproduct.c into the directory serie04.

Aufgabe 4.5. Write a recursive function binomial that computes the binomial coefficient $\binom{n}{k}$ for $k \leq n$. Use the addition formula

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1} \quad \text { for } 1 \leq k<n
$$

with $\binom{n}{0}=1=\binom{n}{n}$ for $n \in \mathbb{N}_{0}$. Write a main program which reads in $k, n \in \mathbb{N}_{0}$ with $k \leq n$ and computes $\binom{n}{k}$.

Aufgabe 4.6. For $x>0$, the recursively defined sequence

$$
x_{1}:=\frac{1}{2}(1+x), \quad x_{n+1}:=\frac{1}{2}\left(x_{n}+\frac{x}{x_{n}}\right) \quad \text { for } n \geq 1
$$

converges towards $\sqrt{x}$. Write a recursive function sqrt_ which computes for given $x>0$ and $\tau>0$ the first element $x_{n}$ of the sequence that satisfies

$$
\frac{\left|x_{n}-x_{n+1}\right|}{\left|x_{n}\right|} \leq \tau \quad \text { or } \quad\left|x_{n}\right| \leq \tau
$$

Moreover, write a main program which reads in $x$ and $\tau$, computes the approximation $x_{n}$ of $\sqrt{x}$ and compares it to the exact value, i.e. prints out the absolute error $\left|x_{n}-\sqrt{x}\right|$.
Hint: You can use the function sqrt from the math library to compute the exact value $\sqrt{x}$. For the computation of the absolute value $|x|$ of a real number $x$, you can use the function fabs from the math library.

Aufgabe 4.7. Write a function sum (n) which, given $n \in \mathbb{N}$, computes the sum $\sum_{j=1}^{n}(j / 2)$. To obtain the sum, do not use the expression $\frac{1}{2} \sum_{j=1}^{n} j$. What do you observe? Then, write a main program which reads $n$ from the keyboard, calls the function and displays the result. Save your source code as sum.c into the directory serie04.

Aufgabe 4.8. Write a void-function multiple(k,nmax), which computes and displays all the integer multiples of $k \in \mathbb{N}$ which are $\leq n_{\max } \in \mathbb{N}$. For instance, for $k=5$ and $n_{\max }=19$, the function yields the output
$1 \times 5=5$
$2 \times 5=10$
$3 \times 5=15$.
Then, write a main program, which reads the values $k$ and $n$ from the keyboard and calls multiple ( $k, n m a x$ ). Save your source code as multiple.c into the directory serie04.

