Dirk Praetorius, Thomas Führer, Michele Ruggeri

Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 4

Aufgabe 4.1. Write a function radian, which, given the magnitude of an angle $\theta \in \mathbb{R}^+$ measured in degrees, computes the measure in radians. The computed value ψ must be in reduced form, i.e., $\psi \in [0, 2\pi)$. Save your source code as radian.c into the directory serie04.

Aufgabe 4.2. Write a function rounding, which, given $x \in \mathbb{R}^+$, computes the number $n \in \mathbb{N}$ which is closest to x. If x is exactly in the middle between two integers n and n + 1, the function chooses the biggest one, i.e., n + 1. Then, write a main program which reads the number x from the keyboard, calls the function and displays the rounded value. Save your source code as rounding.c into the directory serie04.

Aufgabe 4.3. Write a function minabs that, given two numbers $x, y \in \mathbb{R}$, returns the one whose absolute value is smaller. Then, write a main program, which reads x and y from the keyboard and calls the function. Save your source code as minabs.c into the directory serie04.

Aufgabe 4.4. Write a void-function vectorproduct, which, given two vectors $\mathbf{u} = (a, b, c)^T$ and $\mathbf{v} = (x, y, z)^T$, computes the vector product $\mathbf{w} = \mathbf{u} \times \mathbf{v}$ defined by

$$w_1 = bz - cy$$

$$w_2 = cx - az$$

$$w_3 = ay - bx.$$

Then, write a main program which reads the vectors \mathbf{u}, \mathbf{v} from the keyboard, calls the function and displays the vector product. Save your source code as vectorproduct.c into the directory serie04.

Aufgabe 4.5. Write a recursive function **binomial** that computes the binomial coefficient $\binom{n}{k}$ for $k \leq n$. Use the addition formula

$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \quad \text{for } 1 \le k < n$$

with $\binom{n}{0} = 1 = \binom{n}{n}$ for $n \in \mathbb{N}_0$. Write a main program which reads in $k, n \in \mathbb{N}_0$ with $k \leq n$ and computes $\binom{n}{k}$.

Aufgabe 4.6. For x > 0, the recursively defined sequence

$$x_1 := \frac{1}{2}(1+x), \quad x_{n+1} := \frac{1}{2}\left(x_n + \frac{x}{x_n}\right) \text{ for } n \ge 1$$

converges towards \sqrt{x} . Write a recursive function sqrt_ which computes for given x > 0 and $\tau > 0$ the first element x_n of the sequence that satisfies

$$\frac{|x_n - x_{n+1}|}{|x_n|} \le \tau \quad \text{or} \quad |x_n| \le \tau.$$

Moreover, write a main program which reads in x and τ , computes the approximation x_n of \sqrt{x} and compares it to the exact value, i.e. prints out the absolute error $|x_n - \sqrt{x}|$.

Hint: You can use the function sqrt from the math library to compute the exact value \sqrt{x} . For the computation of the absolute value |x| of a real number x, you can use the function fabs from the math library.

Aufgabe 4.7. Write a function sum(n) which, given $n \in \mathbb{N}$, computes the sum $\sum_{j=1}^{n} (j/2)$. To obtain the sum, do not use the expression $\frac{1}{2} \sum_{j=1}^{n} j$. What do you observe? Then, write a main program which reads n from the keyboard, calls the function and displays the result. Save your source code as sum.c into the directory serie04.

Aufgabe 4.8. Write a void-function multiple(k,nmax), which computes and displays all the integer multiples of $k \in \mathbb{N}$ which are $\leq n_{\max} \in \mathbb{N}$. For instance, for k = 5 and $n_{\max} = 19$, the function yields the output

1 x 5 = 5 2 x 5 = 10 3 x 5 = 15.

Then, write a main program, which reads the values k and n from the keyboard and calls multiple(k,nmax). Save your source code as multiple.c into the directory serie04.