## Übungen zur Vorlesung Einführung in das Programmieren für TM

## Serie 6

Aufgabe 6.1. Write a function maxabs which returns the very first entry $x_{j}$ with largest absolute value of a given vector $x \in \mathbb{R}^{n}$, i.e., $x_{j}$ satisfies $\left|x_{j}\right|=\max \left\{\left|x_{i}\right|: i=1, \ldots, n\right\}$ and if $\left|x_{i}\right|=\left|x_{j}\right|$, then it holds $i \geq j$. Additionally, write a main program that reads in the vector $x$ and calls the function maxabs. The vector $x$ should be realized as a static array, where the length is given by a constant in the main program, but the function maxabs should be implemented for arrays with arbitrary lengths. Save your source code as maxabs.c into the directory serie06.
Aufgabe 6.2. Let the two series

$$
a_{N}:=\sum_{n=0}^{N} \frac{1}{(n+1)^{2}} \quad \text { und } \quad b_{M}:=a_{M}^{2}=\sum_{m=0}^{M} \sum_{k=0}^{m} \frac{1}{(k+1)^{2}(m-k+1)^{2}}
$$

be given. Write a program that measures the time used for the computation of $a_{N}$ resp. $b_{M}$ for different values of $N$ resp. $M$. Print out the results tabularly. Do the results meet your expectations? Save your source code as timing.c into the directory serie06. Hint: Think of the computational complexity (Aufwand) for the computation of $a_{N}$ resp. $b_{M}$.
Aufgabe 6.3. Write a function 1 cm that computes the least common multiple of two given natural numbers $a, b \in \mathbb{N}$. For the solution, you can either compute the prim factors of both numbers or use the relation $a b=\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)$, where $\operatorname{gcd}(a, b)$ denotes the greatest common divisor. Save your source code as 1 cm .c into the directory serie06.

Aufgabe 6.4. Write a void-function dec2bin, which, given a natural number $0 \leq z<256$, computes and displays its representation in the binary numeral system. First, the program has to determine the coefficients $a_{i} \in\{0,1\}, i=0, \ldots, 7$, such that $z=\sum_{i=0}^{7} a_{i} 2^{i}$. Then, the binary representation should be visualized in a suitable way. For instance, for $z=77$ the function prints out the sequence $\begin{array}{lllllll}1 & 0 & 0 & 1\end{array}$ 0 1. Moreover, write a main program, which reads $z$ from the keyboard and calls the function dec2bin. Save your source code as dec2bin.c into the directory serie06.
Aufgabe 6.5. The quotient sequence $\left(a_{n+1} / a_{n}\right)_{n \in \mathbb{N}}$ corresponding to the Fibonacci sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$,

$$
a_{0}:=1, \quad a_{1}:=1, \quad a_{n}:=a_{n-1}+a_{n-2} \quad \text { für } n \geq 2,
$$

converges towards the golden ratio $(1+\sqrt{5}) / 2$. In particular, the difference sequence

$$
b_{n}:=\frac{a_{n+1}}{a_{n}}-\frac{a_{n}}{a_{n-1}}
$$

converges towards 0 . Write a function cauchy that returns, for given $k \in \mathbb{N}$, the smallest $n \in \mathbb{N}$ such that $\left|b_{n}\right| \leq 1 / k$. Moreover, write a main program that reads in $k \in \mathbb{N}$ and prints out the index $n \in \mathbb{N}$. Save your source code as goldenRatio.c into the directory serie06.
Aufgabe 6.6. The sine function can be represented as a series via

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!} .
$$

The corresponding $n$-th partial sum is given by

$$
S_{n}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

Write a function $\sin _{-}$, which, given $x \in \mathbb{R}$ and $\varepsilon>0$, returns the first value of $S_{n}(x)$ such that

$$
\left|S_{n}(x)-S_{n-1}(x)\right| /\left|S_{n}(x)\right| \leq \varepsilon \quad \text { or } \quad\left|S_{n}(x)\right| \leq \varepsilon
$$

Then, write a main program, which reads $x \in \mathbb{R}$ and $\varepsilon>0$ from the keyboard, calls the function and displays the computed value $S_{n}(x)$, as well as the value $\sin (x)$, the absolute error $\left|S_{n}(x)-\sin (x)\right|$ and the relative error $\left|S_{n}(x)-\sin (x)\right| /|\sin (x)|$ (provided $\left.\sin (x) \neq 0\right)$. Save your source code as sin.c into the directory serie06.

Aufgabe 6.7. You place your money with your trusted bank for a fixed annual percentage rate. Write a function capital which computes your capital after $n \in \mathbb{N}$ years for a fixed annual percentage $p$ (in percent $\%$ ), and your starting capital $x \in \mathbb{R}_{\geq 0}$. The function should print out your money as follows

| Year | Capital <br> $=======$ |
| :---: | :---: |
| 0 | 1000.00 |
| 1 | 1010.00 |
| 2 | 1020.10 |
| 3 | 1030.30 |
| $\ldots$ | $\ldots .$. |
| 10 | 1104.62 |

For this example holds $p=1, n=10$, and $x=1000.00$. Furthermore, write a function runtime which computes how long (at least) you have to wait to increase your starting capital $x$ to $x_{\max }$ for a fixed percentage $p$. The function reads in $x, p$, and $x_{\max }$. Additionally, write a main program that tests both functions. How long does it take to be a millionaire, if you invest $x=1000$ with a fixed percentage $p=4$ ? Save your source code as capital.c into the directory serie06.

Aufgabe 6.8. Which types of comments do you know? What is the output of the following code and why?

```
#include <stdio.h>
/*int f(double x) {
        return (int) x;
    }
*/
main() {
    int x = 4;
    int y = 2*x*/* f(0.1)+3
                                    */1/4;
    // y = 1;
    printf("y = %d\n",y); // Print out result
}
```

