Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 7

Aufgabe 7.1. Write a function exponential which approximates the value $\exp (x)$ by the partial sum

$$
S_{N}(x):=\sum_{j=0}^{N} \frac{x^{j}}{j!}
$$

where $N \in \mathbb{N}$ satisfies the condition

$$
\left|\frac{x^{N+1}}{(N+1)!}\right| \leq\left|\frac{x^{N}}{N!}\right| \leq \varepsilon
$$

for a given tolerance $\varepsilon>0$. The computation of the summands x^{j} / j ! should be realized efficiently. Compare the absolute errors $\left|S_{N}(x)-\exp (x)\right|$ for different values of ε and evaluation points $x \in \mathbb{R}$.

Aufgabe 7.2. The Frobenius-norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$
\|A\|_{F}:=\left(\sum_{j=1}^{m} \sum_{k=1}^{n} A_{j k}^{2}\right)^{1 / 2}
$$

Write a function frobeniusnorm which computes the Frobenius-norm of a given matrix A. Furthermore, write a main program that reads in the dimensions m, n and the matrix A. The matrix should be stored as a dynamic matrix (of type double**).

Aufgabe 7.3. Many of the mathematical libraries store matrices $A \in \mathbb{R}^{m \times n}$ columnwise, i.e., in a vector $a \in \mathbb{R}^{m n}$, where $a_{j+k m}=A_{j k}$ (the indices start from 0). The row-sum norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$
\|A\|=\max _{j=1, \ldots, m} \sum_{k=1}^{n}\left|A_{j k}\right|
$$

Write a function rowsumnorm, which computes the row-sum norm of a columnwise stored matrix A. Furthermore, write a main program that reads in A and computes $\|A\|$ thereof. Use a dynamic array for the storage of A.

Aufgabe 7.4. As for the contents of variables of elementary type (double,int,...), you can print out the content of a pointer with help of printf. The place-holder $\%$ p is used for addresses (which are the contents of pointers!). The output is system-dependent, but mostly in hexadecimal numbers. Write a function void charPointerDist(char* startaddress, char* endaddress) that prints out the following three values tabularly:

- Starting address
- End address
- Distance (difference) between both addresses (take care of the place-holder in printf!)

Since arrays are stored connectedly, the distance between two successive elements corresponds to the memory used for the specific datatype. Check your function with a char-array c[2] and the follwoing calls:

```
charPointerAbstand(&c[0] ,&c[1]);
charPointerAbstand (c,c+1);
```

Then, write a function void doublePointerDist(double* startaddress, double* endaress) and test it with a double-array. Compare the differences between the results of the two functions.
Optionally: Find out how much memory is used for the types short, int, and long on the lva.student server.

Aufgabe 7.5. Write a function merge that joins two arrays $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, which are sorted in ascending order, into the array $c \in \mathbb{R}^{m+n}$ such that the array c is sorted in ascending order as well, e.g., $a=(1,3,3,4,7)$ and $b=(1,2,3,8)$ should be joined into $c=(1,1,2,3,3,3,4,7,8)$. Use the fact that the arrays a, b are sorted! The input of the function should be a base-pointer to the array c and the length m, n. It should hold $c_{j}=a_{j}$ for $j=0, \ldots, m-1$ and $c_{j}=b_{j-m}$ for $j=m, \ldots, m+n-1$, i.e. the array c reads $c=(a, b)$. The input array should be overwritten by the function. You can use a temporary array of length $m+n$ in your function. Furthermore, write a main program that reads in $m, n \in \mathbb{N}$ as well as $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, and prints out the result $c \in \mathbb{R}^{m+n}$.

Aufgabe 7.6. Write a recursive function mergesort that sorts an array a in ascending order and returns the correctly sorted array. Use the following strategy:

- If the length of a is ≤ 2, then sort the array a explicitely.
- If the length of a is >2, then split a into two arrays b, c of half length. Call the function mergesort recursively for b and c, and rejoin the arrays with the function merge from Exercise 7.5 .

Think of this strategy with help of the example $a=(1,3,5,2,7,1,1,3)$. Test your program appropriately. Note: If the length of a is $2 n+1$ with $n \geq 1$, then a is split into b with length $n+1$ and c with length n. You might want to use pointer arithmetics, i.e. if a is an array and p is a pointer which contains the address of $a[k]$ (i.e. $p=\& a[k]$), then $p+n$ is the address of $a[k+n]$ (i.e. $*(p+n)$ coincides with $a[k+n])$. Recall that a is the base pointer which contains the address of a [0].

Aufgabe 7.7. Explain the differences between variables and pointers. What are advantages resp. disadvantages of these?
Write a function swap that swaps the contents of two variables x, y. What is the problem with the following code?

```
void swap(double x, double y)
{
    double tmp;
    tmp = x;
    x = y;
    y = tmp;
}
```

Aufgabe 7.8. The function squareVector should square all entries of a given vector $x \in \mathbb{R}^{n}$, i.e., the input $(-1,2,0)$ should be turned into $(1,4,0)$. The input vector should be passed as a pointer.

```
#include <stdio.h>
int squareVec(double vec, int n) {
    int j=0;
    for(j=1, j<dim; --j) {
            *vec[j] = &vec[j] * &vec[j];
    }
    return vec;
}
main() {
    double vec[3] = {-1.0,2.0,0.0};
    int j=0;
    squareVec(vec,3);
```

```
    for(j=0; j<3; ++j) {
        printf("vec[%d] = %f ",j,vec[j]);
    }
    printf("\n");
}
```

Change only the function squareVec, such that the main programm prints out the correct result. How many errors do you find? What is the computational complexity (Aufwand) of squareVec?

