
Dirk Praetorius Wintersemester 2014/15
Michele Ruggeri 11.11.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 7

Aufgabe 7.1. Write a function exponential which approximates the value exp(x) by the partial sum

SN (x) :=

N∑
j=0

xj

j!
,

where N ∈ N satisfies the condition ∣∣∣ xN+1

(N + 1)!

∣∣∣ ≤ ∣∣∣xN

N !

∣∣∣ ≤ ε

for a given tolerance ε > 0. The computation of the summands xj/j! should be realized efficiently.
Compare the absolute errors |SN (x)− exp(x)| for different values of ε and evaluation points x ∈ R.

Aufgabe 7.2. The Frobenius-norm of a matrix A ∈ Rm×n is defined by

‖A‖F :=
(m∑

j=1

n∑
k=1

A2
jk

)1/2
.

Write a function frobeniusnorm which computes the Frobenius-norm of a given matrix A. Furthermore,
write a main program that reads in the dimensions m,n and the matrix A. The matrix should be stored
as a dynamic matrix (of type double**).

Aufgabe 7.3. Many of the mathematical libraries store matrices A ∈ Rm×n columnwise, i.e., in a vector
a ∈ Rmn, where aj+km = Ajk (the indices start from 0). The row-sum norm of a matrix A ∈ Rm×n is
defined by

‖A‖ = max
j=1,...,m

n∑
k=1

|Ajk|.

Write a function rowsumnorm, which computes the row-sum norm of a columnwise stored matrix A.
Furthermore, write a main program that reads in A and computes ‖A‖ thereof. Use a dynamic array for
the storage of A.

Aufgabe 7.4. As for the contents of variables of elementary type (double,int,...), you can print
out the content of a pointer with help of printf. The place-holder %p is used for addresses (which
are the contents of pointers!). The output is system-dependent, but mostly in hexadecimal numbers.
Write a function void charPointerDist(char* startaddress, char* endaddress) that prints out
the following three values tabularly:
• Starting address
• End address
• Distance (difference) between both addresses (take care of the place-holder in printf!)

Since arrays are stored connectedly, the distance between two successive elements corresponds to the
memory used for the specific datatype. Check your function with a char-array c[2] and the follwoing
calls:

charPointerAbstand(&c[0],&c[1]);

charPointerAbstand(c,c+1);

Then, write a function void doublePointerDist(double* startaddress, double* endaress) and
test it with a double-array. Compare the differences between the results of the two functions.
Optionally: Find out how much memory is used for the types short, int, and long on the lva.student

server.

Aufgabe 7.5. Write a function merge that joins two arrays a ∈ Rm and b ∈ Rn, which are sorted in
ascending order, into the array c ∈ Rm+n such that the array c is sorted in ascending order as well, e.g.,
a = (1, 3, 3, 4, 7) and b = (1, 2, 3, 8) should be joined into c = (1, 1, 2, 3, 3, 3, 4, 7, 8). Use the fact that the
arrays a,b are sorted! The input of the function should be a base-pointer to the array c and the length
m,n. It should hold cj = aj for j = 0, . . . ,m− 1 and cj = bj−m for j = m, . . . ,m+n− 1, i.e. the array c
reads c = (a, b). The input array should be overwritten by the function. You can use a temporary array
of length m + n in your function. Furthermore, write a main program that reads in m,n ∈ N as well as
a ∈ Rm and b ∈ Rn, and prints out the result c ∈ Rm+n.

Aufgabe 7.6. Write a recursive function mergesort that sorts an array a in ascending order and returns
the correctly sorted array. Use the following strategy:

• If the length of a is ≤ 2, then sort the array a explicitely.

• If the length of a is > 2, then split a into two arrays b, c of half length. Call the function mergesort

recursively for b and c, and rejoin the arrays with the function merge from Exercise 7.5.

Think of this strategy with help of the example a = (1, 3, 5, 2, 7, 1, 1, 3). Test your program appropriately.
Note: If the length of a is 2n + 1 with n ≥ 1, then a is split into b with length n + 1 and c with length
n. You might want to use pointer arithmetics, i.e. if a is an array and p is a pointer which contains the
address of a[k] (i.e. p = &a[k]), then p+n is the address of a[k+n] (i.e. *(p+n) coincides with a[k+n]).
Recall that a is the base pointer which contains the address of a[0].

Aufgabe 7.7. Explain the differences between variables and pointers. What are advantages resp. dis-
advantages of these?
Write a function swap that swaps the contents of two variables x, y. What is the problem with the
following code?

void swap(double x, double y)

{

double tmp;

tmp = x;

x = y;

y = tmp;

}

Aufgabe 7.8. The function squareVector should square all entries of a given vector x ∈ Rn, i.e., the
input (−1, 2, 0) should be turned into (1, 4, 0). The input vector should be passed as a pointer.

#include <stdio.h>

int squareVec(double vec, int n) {

int j=0;

for(j=1, j<dim; --j) {

*vec[j] = &vec[j] * &vec[j];

}

return vec;

}

main() {

double vec[3] = {-1.0,2.0,0.0};

int j=0;

squareVec(vec,3);

for(j=0; j<3; ++j) {

printf("vec[%d] = %f ",j,vec[j]);

}

printf("\n");

}

Change only the function squareVec, such that the main programm prints out the correct result. How
many errors do you find? What is the computational complexity (Aufwand) of squareVec?

