
Dirk Praetorius Wintersemester 2014/15
Michele Ruggeri 02.12.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 10

Aufgabe 10.1. The bubblesort algorithm is an inefficient, but short sorting algorithm which works as
follows: You run through the entries of a given vector x ∈ Rn several times. For every run, each entry xj

of x is compared to its successor xj+1. If xj > xj+1, then the two entries xj and xj+1 are swapped. After
the first complete run through the vector, one knows that (at least) the last element is sorted correctly,
i.e. the last element xn is the maximum of the vector. Thus, in the next run one only has to go up-to
the last-but-one entry of the vector. How many loops do you need for this algorithm? Write a function
bubblesort which sorts a given vector x ∈ Rn with this algorithm. Additionally, write a main program
that reads in x ∈ Rn and sorts it. The length n should be constant. However, your function bubblesort

should be programmed for arbitrary lengths n. Save your source code as bubblesort.c into the directory
serie10.

Aufgabe 10.2. An upper triangular matrix U ∈ Rn×n has at most n(n+1)
2 =

∑n
j=1 j nontrivial coef-

ficients. Write a structure matrixU to save the dimension n ∈ N and the coefficients Uij (in a dyna-

mical vector of length n(n+1)
2 ). Write all necessary functions to work with the structure (newMatrixU,

delMatrixU, getMatrixUDimension, getMatrixUij, setMatrixUij). In which entry u` of the dynamical
vector should the coefficient Uij be saved? Hint: Save U columnwise.

Aufgabe 10.3. Write a function mvmU which, given a vector x ∈ Rn, performs the matrix-vector multipli-
cation with an upper triangular matrix U ∈ Rn×n. For the matrix U use the structure from Exercise 10.2,
for the vector x ∈ Rn and for the product, use the structure from the lecture. Exploit the special nature
of the matrix U , i.e., unnecessary products with trivial coefficients of the matrix must be avoided.

Aufgabe 10.4. Let U ∈ Rn×n be an upper triangular Matrix with Ujj 6= 0 for all j = 1, . . . , n. Given
a vector b ∈ Rn, there exists a unique solution x ∈ Rn of the system Ux = b. Starting from the formula
for the matrix-vector multiplication, derive a formula for x (Hint: Write the formula of the matrix-vector
product b = Ux for bj , j = 1, . . . , n, as a sum, and observe how the nature of U simplifies the indices of
the sum). Write a function solveU, which, given U and b, computes and returns the vector x. For the
matrix U use the structure from Exercise 10.2. For the vectors b, x ∈ Rn, use the structure introduced in
the lecture. To check you inplementation, write a main program which reads an upper triangular matrix
U and a vector x and performs the matrix-vector multiplication b = Ux by using the function from
Exercise 10.3. With the computed right-hand side b, the program then calls the function solveU to solve
the system Ux̃ = b. The solution x̃ should agree with the initial vector x.

Aufgabe 10.5. A matrix A ∈ Rn×n admits a normalized a normalized LU-factorization A = LU if
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


1 0 . . . 0

`21 1
. . .

...
...

. . .
. . . 0

`n1 . . . `n,n−1 1




u11 u12 . . . u1n

0 u22
. . .

...
...

. . .
. . . un−1,n

0 . . . 0 unn

 .

If A admits a normalized LU-factorization, it holds

uik = aik −
i−1∑
j=1

`ijujk for i = 1, . . . , n, k = i, . . . , n,

`ki =
1

uii

(
aki −

i−1∑
j=1

`kjuji

)
for i = 1, . . . , n, k = i + 1, . . . , n,

`ii = 1 for i = 1, . . . , n.



The remaining coefficients of L,U ∈ Rn×n are zero. This can be easily shown from the matrix-matrix
multiplication formula. Write a function computeLU, which computes and returns the LU-factorization
of A. To use the above formulae, compute the coefficients of L and U in an appropriate order. Save your
source code as computeLU.c into the directory serie10.

Aufgabe 10.6. Let A ∈ Rn×n be a tridiagonal matrix, i.e.,

a1,1 a1,2
a2,1 a2,2 a2,3

a3,2 a3,3
. . .

. . .
. . . an−1,n

an,n−1 an,n,


for which there exists a LU-factorization. Determine how the formulae for the coefficients L and U from
Exercise 10.5 simplifies in this special case. Then, write a function computeLU3 which computes the LU-
factorization of A without unnecessary operations, i.e., unnecessary sums/products of trivials coefficients
must be avoided and only the nontrivial coefficients of L and U must be computed.

Aufgabe 10.7. The Laplace formula states that for each j ∈ {1, . . . , n} it holds

detA =

n∑
i=1

(−1)i+j · aij · detAij , (1)

where Aij is the (n−1)× (n−1)-submatrix of A obtained by removing the i-th row and the j-th column
from A. Write a function detlaplace, which applies the Laplace formula to compute the determinant
det(A) of a matrix A ∈ Rn×n. Save your source code as detlaplace.c into the directory serie10.

Aufgabe 10.8. To compute the determinant of a matrix A ∈ Rn×n, using the Laplace formula from
Exercise 10.7 is the best idea (Why? Try it!). It is better to compute the normalized LU-factorization
from Exercise 10.5. Indeed, it holds det(A) = det(L) det(U) = det(U) =

∏n
j=1 ujj . Write a function

det(A), which computes the determinant of a matrix A exploiting its normalized LU-factorization.


