
Dirk Praetorius Wintersemester 2014/15
Michele Ruggeri 16.12.2014

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 12

Aufgabe 12.1. Implement the get and set methods of the class

class Fraction {

long numerator;

unsigned long denominator;

public:

Fraction();

Fraction(long numerator, unsigned long denominator);

setNumerator(long z);

setDenominator(unsigned long n);

double getValue();

};

The method getValue should return the floating-point value of the fraction. Take care of the fact, that
the denominator has to be nonzero. Additionally, implement the constructor Fraction() that sets the
numerator to 0 and the denominator to 1. Save your source code as fraction.cpp into the directory
serie12.

Aufgabe 12.2. Write a class Stopwatch that simulates a stopwatch. The stopwatch consists of two but-
tons: If the first button is pressed, then the time measurement starts. If the button is pressed again, then
the time measurement stops. The second button is used to reset the time to zero. To realize this situation,
implement the methods pushButtonStartStop (first button) and pushButtonReset. Implement another
method that prints out the time formatted in the style hh:mm:ss.xx, e.g., if the measured time is two
minutes, then the output should be 00:02:00.00. Save your source code as Stopwatch.{hpp,cpp} into
the directory serie12.
Hint: Use the data-type clock t and the function clock() from the library time.h. It makes sense to
use a variable isRunning of type bool. If the first button is pressed, then this variable is either set to
true or false.

Aufgabe 12.3. Write a class University. This class should contain the members numStudents, city,
and name as well as the methods graduate, and newStudent. If the method graduate is called, the
number of students gets decreased by one, whereas if newStudent is called, the number of students
increases by one. All data-members should be declared as private! Therefore, you have to implement
get and set methods. Save your source code as University.{hpp,cpp} into the directory serie12.

Aufgabe 12.4. Write a class Name which contains two members, firstName and surname of type
string. Implement the set-method setName that has one string variable as input parameter, and splits
the input in first name and surname automatically. Note that the input can contain multiple first names.
Furthermore, write a method printName which prints out the whole name on the monitor. In case of
multiple first names, the output should be shortened as follows: The name Max Maxi Mustermann should
be printed out as Max M. Mustermann. Save your source code as name.{hpp,cpp} into the directory
serie12.

Aufgabe 12.5. Write a class Client that stores a list of deposits. Furthermore, the class should contain
an object of the class Name from Exercise 12.4. Implement methods for adding and deleting deposits.
Moreover, write a function that computes the assets of all deposits. Think of other useful functions. Save
your source code as client.{hpp,cpp} into the directory serie12.

Aufgabe 12.6. Write a class Deposit with members accountNumber, assets, and ratePerCent. Mo-
reover, implement set and get methods for the members accountNumber, assets. To change the assets,



write a method drawMoney and placeOnDeposit. Note that with this deposit you are not allowed to
draw more money than is given, i.e., the member assets must be positive. The rate per cent as well as
the account number must also be positive. Finally, implement the method calculateAssets. Save your
source code as Deposit.{hpp,cpp} into the directory serie12.

Aufgabe 12.7. Write a Makefile for the exercises of this sheet. It should contain:

• The compilation of all solved exercises.

• The generation of a library and an example of its usage.

Aufgabe 12.8. What is the output of the following code? Explain why!

#include <iostream>

#include <string>

using namespace std;

class T1 {

string t1;

public:

T1(string val) { cout << "I am constructor of " << val << endl; t1=val; }

T1() { cout << "I am constructor of default" << endl; t1="default"; }

~T1() { cout << "I am destructor of " << t1 << endl; }

};

int main() {

T1 bert("bert");

T1 bob;

T1 def("bob");

return 0;

}


