Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 13

Aufgabe 13.1. Write a class Polynomial to save polynomials of degree $n \in \mathbb{N}$, which are represented with respect to the monomial basis, i.e.,

$$
p(x)=\sum_{j=0}^{n} a_{j} x^{j}
$$

The class contains the dynamical vector $\left(a_{0}, \ldots, a_{n}\right) \in \mathbb{R}^{n+1}$ of the coefficients (double*) as well as the degree $n \in \mathbb{N}$. Moreover, the class should contain the following features:

- destructor, constructor to allocate the zero-polynomial of degree n, copy-constructor,
- assignment operator,
- access to the coefficients of the polynomials via [], i.e., for $0 \leq j \leq n \mathrm{p}$ [j] returns the value a_{j},
- the possibility to add two polynomials p and q using the expression $\mathrm{r}=\mathrm{p}+\mathrm{q}$,
- the possibility to multiply two polynomials p and q using the expression $\mathrm{r}=\mathrm{p} * \mathrm{q}$,
- the possibility to evaluate a polynomial p and its k-th derivative $p^{(k)}$ at $x \in \mathbb{R}$ with expressions $p(x)$ and $p(k, x)$, respectively.

Implement the constructors, the destructor of the class, as well as the assignment operator and the access to the coefficients via [].

Aufgabe 13.2. For $k \geq 0$ the k-th derivative $p^{(k)}$ of a polynomial p is still a polynomial. Implement the feature to evaluate the k-th derivative of a polynomial p via $\mathrm{p}(\mathrm{k}, \mathrm{x})$, where $x \in \mathbb{R}$ and $k \geq 0$. For $k=0$ the call $\mathrm{p}(\mathrm{x})$ must be also possible.

Aufgabe 13.3. The sum of two polynomials is still a polynomial. Implement for the class Polynomial from Exercise 13.1 the feature of adding two polynomials p and q via $r=p+q$. A number of type double is also a polynomial. Implement the opportunity to add a number a to a polynomial p via $\mathrm{r}=\mathrm{a}+\mathrm{p}$.

Aufgabe 13.4. The product of two polynomials is still a polynomial. Implement for the class Polynomial from Exercise 13.1 the feature of multiplying two polynomials p and q via $r=\mathrm{p} * \mathrm{q}$. A number of type double is also a polynomial. Implement the opportunity to multiply a number a to a polynomial p via $\mathrm{r}=\mathrm{a} * \mathrm{p}$.

Aufgabe 13.5. A lower triangular matrix $L \in \mathbb{R}^{n \times n}$ with

$$
L=\left(\begin{array}{ccccc}
\ell_{11} & & & & \mathbf{0} \\
\ell_{21} & \ell_{22} & & & \\
\ell_{31} & \ell_{32} & \ell_{33} & & \\
\vdots & \vdots & \vdots & \ddots & \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \ldots & \ell_{n n}
\end{array}\right)
$$

has at most $\frac{n(n+1)}{2}=\sum_{j=1}^{n} j$ nontrivial coefficients. Write a class matrixL to save the coefficients $L_{i j}$ in a dynamical vector with length $\frac{n(n+1)}{2}$ together with the dimension $n \in \mathbb{N}$. Save the matrix L row-wise. The class should contain the following features:

- constructor, copy-constructor, destructor,
- assignment operator,
- access to the coefficients via $L(i, j)$,
- the possibility to add and multiply two matrices A and B (of appropriate dimension) via $A+B$ and $A * B$, respectively.

Implement the constructors, the destructor, as well as the assignment operator and the access to the coefficients.

Aufgabe 13.6. Overload the operator + for the class MatrixL from Exercise 13.8 . Then, write a programm to test your implementation.

Aufgabe 13.7. Use the formula for the matrix-matrix product to show that the product of two lower triangular matrices is a lower triangular matrix. Then, overload the operator $*$ for the class MatrixL from Exercise 13.8 . Moreover, write a program to test your implementation.

Aufgabe 13.8. Let $L \in \mathbb{R}^{n \times n}$ be a lower triangular matrix such that $\ell_{j j} \neq 0$ for all $1 \leq j \leq n$. Given $b \in \mathbb{R}^{n}$, there exists a unique $x \in \mathbb{R}^{n}$ such that $L x=b$. Write a method solveL for the class from Exercise to compute x. Implement also the feature to solve the system $L x=b$ (for a lower triangular matrix $L \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^{n}$) by using the command $\mathrm{x}=\mathrm{L} \mid \mathrm{b}$, i.e., the expressions $\mathrm{x}=\mathrm{solveL}(\mathrm{L}, \mathrm{b})$ and $x=L \mid b$ must be equivalent.

