
Dirk Praetorius Sommersemester 2015
Michele Ruggeri 21.04.2015

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 5

Aufgabe 5.1. The bubblesort algorithm is an inefficient, but short sorting algorithm which works as
follows: You run through the entries of a given vector x ∈ Rn several times. For every run, each entry xj
of x is compared to its successor xj+1. If xj > xj+1, then the two entries xj and xj+1 are swapped. After
the first complete run through the vector, one knows that (at least) the last element is sorted correctly,
i.e. the last element xn is the maximum of the vector. Thus, in the next run one only has to go up-to
the last-but-one entry of the vector. How many loops do you need for this algorithm? Write a function
bubblesort which sorts a given vector x ∈ Rn with this algorithm. Additionally, write a main program
that reads in x ∈ Rn and sorts it. The length n should be constant. However, your function bubblesort

should be programmed for arbitrary lengths n. Save your source code as bubblesort.c into the directory
serie05.

Aufgabe 5.2. Write a function merge that joins two arrays a ∈ Rm and b ∈ Rn, which are sorted in
ascending order, into the array c ∈ Rm+n such that the array c is sorted in ascending order as well, e.g.,
a = (1, 3, 3, 4, 7) and b = (1, 2, 3, 8) should be joined into c = (1, 1, 2, 3, 3, 3, 4, 7, 8). Use the fact that the
arrays a,b are sorted! The input of the function should be a base-pointer to the array c and the length
m,n. It should hold cj = aj for j = 0, . . . ,m− 1 and cj = bj−m for j = m, . . . ,m+n− 1, i.e. the array c
reads c = (a, b). The input array should be overwritten by the function. You can use a temporary array
of length m+ n in your function. Furthermore, write a main program that reads in m,n ∈ N as well as
a ∈ Rm and b ∈ Rn, and prints out the result c ∈ Rm+n.

Aufgabe 5.3. Write a recursive function mergesort that sorts an array a in ascending order and returns
the correctly sorted array. Use the following strategy:

• If the length of a is ≤ 2, then sort the array a explicitely.

• If the length of a is > 2, then split a into two arrays b, c of half length. Call the function mergesort

recursively for b and c, and rejoin the arrays with the function merge from Exercise 5.2.

Think of this strategy with help of the example a = (1, 3, 5, 2, 7, 1, 1, 3). Test your program appropriately.
Note: If the length of a is 2n+ 1 with n ≥ 1, then a is split into b with length n+ 1 and c with length
n. You might want to use pointer arithmetics, i.e. if a is an array and p is a pointer which contains the
address of a[k] (i.e. p = &a[k]), then p+n is the address of a[k+n] (i.e. *(p+n) coincides with a[k+n]).
Recall that a is the base pointer which contains the address of a[0].

Aufgabe 5.4. Let the two series

aN :=

N∑
n=0

1

(n+ 1)2
und bM :=

M∑
m=0

m∑
k=0

1

(k + 1)2(m− k + 1)2

be given. Write a program that measures the time used for the computation of aN resp. bM for different
values of N resp. M . Print out the results tabularly. Do the results meet your expectations? Save your
source code as timing.c into the directory serie05. Hint: Think of the computational complexity
(Aufwand) for the computation of aN resp. bM .

Aufgabe 5.5. The sine function can be represented as a series via

sin(x) =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

The corresponding n-th partial sum is given by

Sn(x) =

n∑
k=0

(−1)k
x2k+1

(2k + 1)!
.

Write a function sin , which, given x ∈ R and ε > 0, returns the first value of Sn(x) such that

|Sn(x)− Sn−1(x)|/|Sn(x)| ≤ ε or |Sn(x)| ≤ ε.

Then, write a main program, which reads x ∈ R and ε > 0 from the keyboard, calls the function and
displays the computed value Sn(x), as well as the value sin(x), the absolute error |Sn(x) − sin(x)| and
the relative error |Sn(x) − sin(x)|/| sin(x)| (provided sin(x) 6= 0). Save your source code as sin.c into
the directory serie05.

Aufgabe 5.6. An alternative root-finding algorithm is the Newton method. Let f : [a, b]→ R. Given an
initial guess x0, define the sequence (xn)n∈N via

xk+1 = xk − f(xk)/f ′(xk).

Implement the algorithm in a function newton. Given x0 and a tolerance τ > 0, the function performs
the Newton iteration until

|f ′(xn)| ≤ τ

or

|f(xn)| ≤ τ and |xn − xn−1| ≤

{
τ for |xn| ≤ τ,
τ |xn| else.

In the first case, print a warning to inform that the result is presumably wrong. The function uses suitable
implementations of the object function double f(double x) and its derivative double fprime(double

x). Then, write a main program which reads x0 from the keyboard and returns xn. Save your source
code as newton.c into the directory serie05.

Aufgabe 5.7. As for the contents of variables of elementary type (double,int,...), you can print
out the content of a pointer with help of printf. The place-holder %p is used for addresses (which
are the contents of pointers!). The output is system-dependent, but mostly in hexadecimal numbers.
Write a function void charPointerDist(char* startaddress, char* endaddress) that prints out
the following three values tabularly:
• Starting address
• End address
• Distance (difference) between both addresses (take care of the place-holder in printf!)

Since arrays are stored connectedly, the distance between two successive elements corresponds to the
memory used for the specific datatype. Check your function with a char-array c[2] and the follwoing
calls:

charPointerAbstand(&c[0],&c[1]);

charPointerAbstand(c,c+1);

Then, write a function void doublePointerDist(double* startaddress, double* endaress) and
test it with a double-array. Compare the differences between the results of the two functions.
Optionally: Find out how much memory is used for the types short, int, and long on the lva.student

server.

Aufgabe 5.8. The function squareVector should square all entries of a given vector x ∈ Rn, i.e., the
input (−1, 2, 0) should be turned into (1, 4, 0). The input vector should be passed as a pointer.

#include <stdio.h>

int squareVec(double vec, int n) {

int j=0;

for(j=1, j<dim; --j) {

*vec[j] = &vec[j] * &vec[j];

}

return vec;

}

main() {

double vec[3] = {-1.0,2.0,0.0};

int j=0;

squareVec(vec,3);

for(j=0; j<3; ++j) {

printf("vec[%d] = %f ",j,vec[j]);

}

printf("\n");

}

Change only the function squareVec, such that the main programm prints out the correct result. How
many errors do you find? What is the computational complexity (Aufwand) of squareVec?

