Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 5

Aufgabe 5.1. The bubblesort algorithm is an inefficient, but short sorting algorithm which works as follows: You run through the entries of a given vector $x \in \mathbb{R}^{n}$ several times. For every run, each entry x_{j} of x is compared to its successor x_{j+1}. If $x_{j}>x_{j+1}$, then the two entries x_{j} and x_{j+1} are swapped. After the first complete run through the vector, one knows that (at least) the last element is sorted correctly, i.e. the last element x_{n} is the maximum of the vector. Thus, in the next run one only has to go up-to the last-but-one entry of the vector. How many loops do you need for this algorithm? Write a function bubblesort which sorts a given vector $x \in \mathbb{R}^{n}$ with this algorithm. Additionally, write a main program that reads in $x \in \mathbb{R}^{n}$ and sorts it. The length n should be constant. However, your function bubblesort should be programmed for arbitrary lengths n. Save your source code as bubblesort. c into the directory serie05.

Aufgabe 5.2. Write a function merge that joins two arrays $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, which are sorted in ascending order, into the array $c \in \mathbb{R}^{m+n}$ such that the array c is sorted in ascending order as well, e.g., $a=(1,3,3,4,7)$ and $b=(1,2,3,8)$ should be joined into $c=(1,1,2,3,3,3,4,7,8)$. Use the fact that the arrays a, b are sorted! The input of the function should be a base-pointer to the array c and the length m, n. It should hold $c_{j}=a_{j}$ for $j=0, \ldots, m-1$ and $c_{j}=b_{j-m}$ for $j=m, \ldots, m+n-1$, i.e. the array c reads $c=(a, b)$. The input array should be overwritten by the function. You can use a temporary array of length $m+n$ in your function. Furthermore, write a main program that reads in $m, n \in \mathbb{N}$ as well as $a \in \mathbb{R}^{m}$ and $b \in \mathbb{R}^{n}$, and prints out the result $c \in \mathbb{R}^{m+n}$.

Aufgabe 5.3. Write a recursive function mergesort that sorts an array a in ascending order and returns the correctly sorted array. Use the following strategy:

- If the length of a is ≤ 2, then sort the array a explicitely.
- If the length of a is >2, then split a into two arrays b, c of half length. Call the function mergesort recursively for b and c, and rejoin the arrays with the function merge from Exercise 5.2 .

Think of this strategy with help of the example $a=(1,3,5,2,7,1,1,3)$. Test your program appropriately. Note: If the length of a is $2 n+1$ with $n \geq 1$, then a is split into b with length $n+1$ and c with length n. You might want to use pointer arithmetics, i.e. if a is an array and p is a pointer which contains the address of $\mathrm{a}[\mathrm{k}]$ (i.e. $\mathrm{p}=\& \mathrm{a}[\mathrm{k}]$), then $\mathrm{p}+\mathrm{n}$ is the address of $\mathrm{a}[\mathrm{k}+\mathrm{n}]$ (i.e. $*(\mathrm{p}+\mathrm{n})$ coincides with $\mathrm{a}[\mathrm{k}+\mathrm{n}]$). Recall that a is the base pointer which contains the address of a [0].

Aufgabe 5.4. Let the two series

$$
a_{N}:=\sum_{n=0}^{N} \frac{1}{(n+1)^{2}} \quad \text { und } \quad b_{M}:=\sum_{m=0}^{M} \sum_{k=0}^{m} \frac{1}{(k+1)^{2}(m-k+1)^{2}}
$$

be given. Write a program that measures the time used for the computation of a_{N} resp. b_{M} for different values of N resp. M. Print out the results tabularly. Do the results meet your expectations? Save your source code as timing.c into the directory serie05. Hint: Think of the computational complexity (Aufwand) for the computation of a_{N} resp. b_{M}.

Aufgabe 5.5. The sine function can be represented as a series via

$$
\sin (x)=\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

The corresponding n-th partial sum is given by

$$
S_{n}(x)=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}
$$

Write a function $\sin _{-}$, which, given $x \in \mathbb{R}$ and $\varepsilon>0$, returns the first value of $S_{n}(x)$ such that

$$
\left|S_{n}(x)-S_{n-1}(x)\right| /\left|S_{n}(x)\right| \leq \varepsilon \quad \text { or } \quad\left|S_{n}(x)\right| \leq \varepsilon
$$

Then, write a main program, which reads $x \in \mathbb{R}$ and $\varepsilon>0$ from the keyboard, calls the function and displays the computed value $S_{n}(x)$, as well as the value $\sin (x)$, the absolute error $\left|S_{n}(x)-\sin (x)\right|$ and the relative error $\left|S_{n}(x)-\sin (x)\right| /|\sin (x)|$ (provided $\left.\sin (x) \neq 0\right)$. Save your source code as sin.c into the directory serie05.

Aufgabe 5.6. An alternative root-finding algorithm is the Newton method. Let $f:[a, b] \rightarrow \mathbb{R}$. Given an initial guess x_{0}, define the sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ via

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right) .
$$

Implement the algorithm in a function newton. Given x_{0} and a tolerance $\tau>0$, the function performs the Newton iteration until

$$
\left|f^{\prime}\left(x_{n}\right)\right| \leq \tau
$$

or

$$
\left|f\left(x_{n}\right)\right| \leq \tau \quad \text { and } \quad\left|x_{n}-x_{n-1}\right| \leq \begin{cases}\tau & \text { for }\left|x_{n}\right| \leq \tau \\ \tau\left|x_{n}\right| & \text { else }\end{cases}
$$

In the first case, print a warning to inform that the result is presumably wrong. The function uses suitable implementations of the object function double f (double x) and its derivative double fprime (double x). Then, write a main program which reads x_{0} from the keyboard and returns x_{n}. Save your source code as newton.c into the directory serie05.

Aufgabe 5.7. As for the contents of variables of elementary type (double,int,...), you can print out the content of a pointer with help of printf. The place-holder $\%$ p is used for addresses (which are the contents of pointers!). The output is system-dependent, but mostly in hexadecimal numbers. Write a function void charPointerDist(char* startaddress, char* endaddress) that prints out the following three values tabularly:

- Starting address
- End address
- Distance (difference) between both addresses (take care of the place-holder in printf!) Since arrays are stored connectedly, the distance between two successive elements corresponds to the memory used for the specific datatype. Check your function with a char-array c[2] and the follwoing calls:
charPointerAbstand(\&c [0], \&c [1]) ;
charPointerAbstand ($c, c+1$);
Then, write a function void doublePointerDist(double* startaddress, double* endaress) and test it with a double-array. Compare the differences between the results of the two functions.
Optionally: Find out how much memory is used for the types short, int, and long on the lva.student server.

Aufgabe 5.8. The function squareVector should square all entries of a given vector $x \in \mathbb{R}^{n}$, i.e., the input $(-1,2,0)$ should be turned into $(1,4,0)$. The input vector should be passed as a pointer.

```
#include <stdio.h>
int squareVec(double vec, int n) {
```

```
    int j=0;
    for(j=1, j<dim; --j) {
        *vec[j] = &vec[j] * &vec[j];
    }
    return vec;
}
main() {
    double vec[3] = {-1.0,2.0,0.0};
    int j=0;
    squareVec(vec,3);
    for(j=0; j<3; ++j) {
        printf("vec[%d] = %f ",j,vec[j]);
    }
    printf("\n");
}
```

Change only the function squareVec, such that the main programm prints out the correct result. How many errors do you find? What is the computational complexity (Aufwand) of squareVec?

