
Dirk Praetorius Sommersemester 2015
Michele Ruggeri 12.05.2015

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 8

Aufgabe 8.1. For a continuous Integrand f : [a, b]→ R the integral I :=
∫ b

a
f dx can be approximated

numerically by the so-called trapezoidal rule. For a given n ∈ N and h := (b− a)/n calculate

In :=
h

2

(
f(a) + 2

n−1∑
j=1

f(a+ jh) + f(b)
)
. (1)

In the case of a piecewise affine function p with p(a+ jh) = f(a+ jh) we have In = I. Write a function
trapecoidalrule(f,a,b,tau) that calculates the approximating sequence In, until

|In − In−1| ≤

{
τ für |In| ≤ τ,
τ |In| anderenfalls.

Return the whole approximating sequence. Test your functions with f(x) = exp(x) on [0, 10]. Print a
tabular on screen in which you compare n and the corresponding error |I − In| and the experimental
rate of convergence. Save your source code as trapezoidal.c into the directory serie08.

Aufgabe 8.2. Write a structure CVector for the storage of vector with complex coefficients. Use the
structure cdouble from Exercise 7.1 and Exercise 7.2. Moreover, implement the functions newCVector,
delCVector, getCVectorLength, getCVectorEntry, setCVectorEntry. Save your source code as cvector.c
into the directory serie08.

Aufgabe 8.3. Write a function CVectorVector, which, given two complex vectors x, y ∈ Cn, computes
the scalar product x · y :=

∑n
j=1 xjyj . Use the structure CVector from Exercise 7.1 and Exercise 7.2.

Then, write a main program, which reads two complex vectors x, y ∈ Cn from the keyboard and displays
the value of the scalar product x · y ∈ C. Save your source code as CVectorVector.c into the directory
serie08. Test your code on a suitable example.

Aufgabe 8.4. Write a structure CMatrix for the storage of m × n-matrices A ∈ Cm×n with complex
entries. Use the structure cdouble from Exercise 7.1 and Exercise 7.2. Furthermore, write the functions
newCMatrix, delCMatrix, getCMatrixM, getCMatrixN, getCMatrixCoeff, setCMatrixCoeff. Save your
source code as CMatrix.c into the directory serie08.

Aufgabe 8.5. Write a function cmatrixvector, which, for given complex matrix A ∈ Cm×n and a
complex vector x ∈ Cn, calculates the Matrix-Vector-product Ax ∈ Cm. For calculating with the coeffi-
cients use Exercise 7.1 and Exercise 7.2. Save your source code as cmatrixvector.c into the directory
serie08. Test your code on a suitable example.

Aufgabe 8.6. Write a structure Matrix to save quadratic n× n double matrices. Distinguish between
fully-populated matrices (type 0), lower triangle matrices (type ’L’) and upper triangle matrices (type
’U’). A lower triangular matrix L and an upper triangular matrix U have the following polulation
structure:

U =



u11 u12 u13 . . . u1n

u22 u23 . . . u2n

u33 . . . u3n

. . .
...

0 unn


L =



`11 0

`21 `22

`31 `32 `33

...
...

...
. . .

`n1 `n2 `n3 . . . `nn



We thus have ujk = 0, if j > k and `jk = 0, if j < k. A fully populated matrix should by stored in
Fortran-Style- therefore columnwise in a dynamical vector with n · n entries. triangle-matrices should
be stored in a vector with

∑n
j=1 j = n(n + 1)/2 entries. Write all the necessary functions to work

with this structure ((newMatrix, delMatrix, getMatrixDimension, getMatrixType, getMatrixEntry,
setMatrixEntry). Save your source code as matrix.c into the directory serie08. (Hint: The functions
getMatrixEntry and setMatrixEntry depend on the type of the matrix.)

Aufgabe 8.7. Write a function columnsumnorm.c, which, for a given matrix A ∈ Rn×n, calculates and
returns the absolute column sum norm

‖A‖S := max
j=1,...,n

n∑
i=1

|Aij |

A is stored in the structure from Exercise 8.6. if A is a triangular matrix, exploit the population structure
of A. Save your source code as columnsumnorm into the directory serie08. Testen Sie Ihren Code an
einem geeigneten Beispiel.

Aufgabe 8.8. Let squareMatrix be a structure data-type for the storage of quadratic matrices A ∈
Rn×n. The structure contains the dimension n ∈ N and the entries given as double*, i.e., the entries of the
matrix is stored columnwise. The functions newSquareMatrix, delSquareMatrix, getSquareMatrixDimension,

getSquareMatrixEntry and setSquareMatrixEntry are implemented in order to work with the struc-
ture squareMatrix. (NOTE: You DO NOT have to implement neither the structure squareMatrix, nor
the corresponding functions!)
What is the function func doing, when it is called with the matrix

A =


3 0 0 0
0 4 0 3
1 2 0 2
17 4 4 1

?

Create a table, where you put in the values of all variables at the given time (the comment line in the
following code). What is the function func doing in general? What is inefficient about this code? Explain
how this code can be improved!

int func(squareMatrix* mat) {

double foo = 0;

int mp, dp, tf;

mp = 1;

for (dp = 0; dp < getMatrixDim(mat); ++dp) {

for (tf = dp+1; tf < getMatrixDim(mat); ++tf) {

foo = getMatrixEntry(mat,dp,tf);

if (foo != 0) {

mp = 0;

}

/* VALUE OF VARIABLES AT THIS POINT */

}

}

return mp;

}

