
Dirk Praetorius Sommersemester 2015
Michele Ruggeri 16.06.2015

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 12

Aufgabe 12.1. Write a class Polynomial to save polynomials of degree n ∈ N, which are represented
with respect to the monomial basis, i.e.,

p(x) =

n∑
j=0

ajx
j .

The class contains the dynamical vector (a0, . . . , an) ∈ Rn+1 of the coefficients (double*) as well as the
degree n ∈ N. Implement the following features:

• destructor, constructor to allocate the zero-polynomial of degree n, copy-constructor,

• assignment operator,

• access to the coefficients of the polynomials via [], i.e., for 0 ≤ j ≤ n p[j] returns the value aj ,

• and the possibility to print a polynomial p on screen via the syntax cout << p.

Implement the constructors, the destructor of the class, as well as the assignment operator and the access
to the coefficients via []. Moreover, write a main-program to test your implementation.

Aufgabe 12.2. For k ≥ 0 the k-th derivative p(k) of a polynomial p is still a polynomial. Implement
for the class Polynomial from Exercise 12.1 the feature to evaluate the k-th derivative of a polynomial
p via p(k,x), where x ∈ R and k ≥ 0. For k = 0 the call p(x) must be also possible. Moreover, write a
main-program to test your implementation.

Aufgabe 12.3. The sum of two polynomials is still a polynomial. Implement for the class Polynomial

from Exercise 12.1 the feature of adding two polynomials p and q via r=p+q. A number of type double

is also a polynomial. Moreover, implement the opportunity to add a number a ∈ R stored as double or
int to a polynomial p in an appropriate way via r=a+p and r=p+a. Write a main-program to test your
implementations.

Aufgabe 12.4. The product of two polynomials is still a polynomial. Implement for the class Polynomial
from Exercise 12.1 the feature of multiplying two polynomials p and q via r=p*q. A number of type double
is also a polynomial. Moreover, implement the opportunity to multiply a number a ∈ R stored as double
or int with a polynomial p in an appropriate way via r=a*p and r=p*a. Write a main-program to test
your implementations.

Aufgabe 12.5. A lower triangular matrix L ∈ Rn×n with

L =



`11 0

`21 `22

`31 `32 `33

...
...

...
. . .

`n1 `n2 `n3 . . . `nn


has at most n(n+1)

2 =
∑n

j=1 j nontrivial coefficients. Write a class matrixL to save the coefficients Lij in

a dynamical vector with length n(n+1)
2 together with the dimension n ∈ N. Save the matrix L row-wise.

Implement the following features:

• constructor, copy-constructor, destructor,

• assignment operator,

• access to the coefficients via L(i,j),

• and the possibility to print a lower triangular matrix L on screen via cout << L.

Implement the constructors, the destructor, as well as the assignment operator and the access to the
coefficients. Moreover, write a main-program to test your implementation.

Aufgabe 12.6. Overload the operator + for the class MatrixL from Exercise 12.5 to be able to add
to lower triangular matrices with matching dimensions. Moreover, write a main-programm to test your
implementation.

Aufgabe 12.7. Use the formula for the matrix-matrix product to show that the product of two lower
triangular matrices is a lower triangular matrix. Then, overload the operator * for the class MatrixL

from Exercise 12.5 to be able to perform the matrix-matrix product for two lower triangular matrices
with matching dimensions. Moreover, write a main-program to test your implementation.

Aufgabe 12.8. Let L ∈ Rn×n be a lower triangular matrix such that `jj 6= 0 for all 1 ≤ j ≤ n. Given
b ∈ Rn, there exists a unique x ∈ Rn such that Lx = b. Implement also the feature to solve the system
Lx = b for a lower triangular matrix L ∈ Rn×n and a vector b ∈ Rn by using the command x=L|b. L has
the type MatrixL from Exercise 12.5 and b has the well-known type Vector from the lecture. Moreover,
write a main-program to test your implementation.

