
Dirk Praetorius, Wintersemester 2015/16
Michele Ruggeri 04.-06.11.2015

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 4

Aufgabe 4.1. The Fibonacci sequence is defined by x0 := 0, x1 := 1 and xn+1 := xn + xn−1. Write a
nonrecursive function fibonacci(k), which, given an index k, computes and returns xk. Then, write a
main program which reads k from the keyboard and displays xk. Save your source code as fibonacci.c
into the directory serie04. Compare your implementation to your code from Exercise 3.5. Discuss the
advantages and disadvantages of both implementations!

Aufgabe 4.2. Write a nonrecursive function binomial which computes the binomial coefficient
(
n
k

)
.

Use an appropriate loop and the identity
(
n
k

)
= n·(n−1)···(n−k+1)

1·2···k = n
1 ·

n−1
2 · · ·

n−k+1
k . Additionally, write

a main program that reads in the values k, n ∈ N0 with k ≤ n and prints out
(
n
k

)
. Save your source code

as binomial.c into the directory serie04.

Aufgabe 4.3. A triple (x, y, z) ∈ N3 of natural number is called a Pythagorean triple if it holds x2+y2 =
z2. The most common example would be (3, 4, 5). Obviously we have z > max{x, y} as well as x 6= y
and without the loss of generality we can assume x < y. Write a void function pythagoras, that, for
a given n ∈ N calculates and prints all Pythagorean tiples x < y < z ≤ n. Moreover, write a main-
programme, that reads in n and calls pythagoras. Save your source code as pythagoras.c into the
directory serie04..

Aufgabe 4.4. Write a void-function multiple(k,nmax), which computes and displays all the integer
multiples of k ∈ N which are ≤ nmax ∈ N. For instance, for k = 5 and nmax = 19, the function yields the
output

1 x 5 = 5

2 x 5 = 10

3 x 5 = 15.

Then, write a main program, which reads the values k and n from the keyboard and calls multiple(k,nmax).
Save your source code as multiple.c into the directory serie04.

Aufgabe 4.5. Write a function scalarproduct, which, given two vectors x, y ∈ Rn, computes the
scalar product x · y :=

∑n
j=1 xjyj . The length n ∈ N should be a constant in the main-programme, but

the function scalarproduct should be programmed for arbitrary lengths n. Furthermore, write a main
program which reads in x, y ∈ Rn and calls scalarproduct. Save your source code as scalarproduct.c
into the directory serie04.

Aufgabe 4.6. Write a function geometricMean that computes and returns the geometric mean value

xgeom = n

√√√√ n∏
j=1

xj

of a given vector x ∈ Rn
≥0 The length n ∈ N should be a constant in the main-programme, but the

function geometricMean should be programmed for arbitrary lengths n. Furthermore, write a main
program which reads in x ∈ Rn and calls geometricMean. Save your source code as geometricMean.c

into the directory serie04.

Aufgabe 4.7. Write a function maxcompare, that counts for given a, b ∈ Rn how often the maximum
of the vectors a and b denoted by M := max{ai, bi | i = 1, . . . , n} is represented in a and b at the
same position. For example for the vectors a = (1.1, 4, 2e − 4, 4, 4, 3, 4,−1.5) and b = (2.2, 4, 4, 2e −
5, 4,−1, 2.7, 4) we have M = 4. The function should thus return 2, since a2 = b2 = a5 = b5 = M = 4. If,



for example, M is represented only in a or b, then, clearly, the function should return 0. The length n ∈ N
should be a constant in the main-programme, but the function maxcompare should be programmed for
arbitrary lengths n. Furthermore, write a main program which reads in a, b ∈ Rn and calls maxcompare.
Save your source code as maxcompare.c into the directory serie04.

Aufgabe 4.8. Write a main-programme that prints the first k lines of Pascal’s triangle: Every line starts
and ends with 1. The remaining entries are the sum of two neighbouring entries from the line above. For
k = 5 we have for example

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1

See also:

http://en.wikipedia.org/wiki/Pascal’s_triangle

The function should be implemented efficiently. You must not use the representation of the entries with
the binomial coefficients. Furthermore, always store only one line in one vector with the length k and
overwrite the vector in each step in an appropriate way. The length k ∈ N should be a constant in the
main-programme. Save your source code as pascal.c into the directory serie04.

http://en.wikipedia.org/wiki/Pascal's_triangle

