
Dirk Praetorius, Wintersemester 2015/16
Michele Ruggeri 18.-20.11.2015

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 6

Aufgabe 6.1. Write a function lcm that computes the least common multiple of two given natural
numbers a, b ∈ N. For the solution, you can either compute the prim factors of both numbers or use the
relation ab = gcd(a, b) · lcm(a, b), where gcd(a, b) denotes the greatest common divisor. Save your source
code as lcm.c into the directory serie06.

Aufgabe 6.2. An alternative root-finding algorithm (see also the Bisection method from the lecture)
is the so called secant method. Let f : [a, b] → R. Given two initial guesses x0 and x1, the appromation
xn+1 is obtained as the root of the line through (xn−1, f(xn−1)) and (xn, f(xn)), i.e.,

xn+1 := xn − f(xn)
xn−1 − xn

f(xn−1)− f(xn)
.

Write a function secant(x0,x1,tau), which performs the above iteration until either

|f(xn)− f(xn−1)| ≤ τ

or

|f(xn)| ≤ τ and |xn − xn−1| ≤

{
τ for |xn| ≤ τ,
τ |xn| else.

In the first case, print a warning to inform that the result is presumably wrong. The function returns
xn as the approximation of the root z0 of f . Test your implementation with a suitable example.Then,
write a main program, that reads x0 and x1 from the keyboard and displays xn. Save your source code
as secant.c into the directory serie06.

Aufgabe 6.3. Expand MinSort from the lecture by a parameter type, such that the functions sorts a
vector x ∈ Rn in ascending ascending order (type = 1) or in descending order (type = -1). Moreover,
write a main-programme, that reads in x and type, calls MinSort and prints the sorted vector. The
length n should be a constant in the main-programme, but your implementation of MinSort should work
for arbitrary lengths. Save your source code as minsort.c into the directory serie06.

Aufgabe 6.4. The bubblesort algorithm is an inefficient, but short sorting algorithm which works as
follows: You run through the entries of a given vector x ∈ Rn several times. For every run, each entry xj
of x is compared to its successor xj+1. If xj > xj+1, then the two entries xj and xj+1 are swapped. After
the first complete run through the vector, one knows that (at least) the last element is sorted correctly,
i.e. the last element xn is the maximum of the vector. Thus, in the next run one only has to go up-to
the last-but-one entry of the vector. How many loops do you need for this algorithm? Write a function
bubblesort which sorts a given vector x ∈ Rn with this algorithm. Additionally, write a main program
that reads in x ∈ Rn and sorts it. The length n should be constant. However, your function bubblesort

should be programmed for arbitrary lengths n. Save your source code as bubblesort.c into the directory
serie06.

Aufgabe 6.5. Implement the Quicksort-Algorithm, which sorts a vector x ∈ Rn: To do so Quicksort
chooses an arbitrary Pivot-element form x, e.g. x1. Then, x is split in to parts x(<) and x(≥) and the
Pivot-element x1: x(<) contains all the elements ≤ x1 and x(≥) contains only elements ≥ x1. x(<) and
x(≥) are sorted recursively. Afterwards, the result is put together. The direct implementation of this
algorithm, however, requires additional storage. To circumvent this, proceed as follows: Starting with
j = 2 search for and element xj ≥ x1, i.e. xj belongs to x(≥). Furthermore, starting with k = n search

an element xk < x1, i.e. xk belongs to x(<). In that case, swap xj and xk. If j and k coincide then
x has already the form (x1, x

(<), x(≥)). With one additional swap, the form (x(<), x1, x
(≥)) is obtained

immediately. It remains to sort x(<) and x(≥) recursively. Moreover, write a main-programme, that
reads in x and calls Quicksort. The length n should be a constant in the main-programme, but your
implementation of Quicksort should work for arbitrary lengths. Save your source code as quicksort.c

into the directory serie06.

Aufgabe 6.6. Let the two series

aN :=

N∑
n=0

1

(n+ 1)2
und bM :=

M∑
m=0

m∑
k=0

1

(k + 1)2(m− k + 1)2

be given. Write a program that measures the time used for the computation of aN resp. bM for different
values of N resp. M . Print out the results tabularly. Do the results meet your expectations? Save your
source code as timing.c into the directory serie06. Hint: Think of the computational complexity
(Aufwand) for the computation of aN resp. bM .

Aufgabe 6.7. You place your money with your trusted bank for a fixed annual percentage rate. Write
a function capital which computes your capital after n ∈ N years for a fixed annual percentage p (in
percent %), and your starting capital x ∈ R≥0. The function should print out your money as follows

Year Capital

==== =======

0 1000.00

1 1010.00

2 1020.10

3 1030.30

..

10 1104.62

For this example holds p = 1, n = 10, and x = 1000.00. Furthermore, write a function runtime which
computes how long (at least) you have to wait to increase your starting capital x to xmax for a fixed
percentage p. The function reads in x, p, and xmax. Additionally, write a main program that tests both
functions. How long does it take to be a millionaire, if you invest x = 1000 with a fixed percentage p = 4?
Save your source code as capital.c into the directory serie06.

Aufgabe 6.8. What is the best and worst case for the computational cost of the Bubblesort algorithm
from Exercise 6.4? Explain your answer!

