Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 6

Aufgabe 6.1. Write a function lcm that computes the *least common multiple* of two given natural numbers $a, b \in \mathbb{N}$. For the solution, you can either compute the prim factors of both numbers or use the relation $ab = \gcd(a, b) \cdot \operatorname{lcm}(a, b)$, where $\gcd(a, b)$ denotes the *greatest common divisor*. Save your source code as lcm.c into the directory serie06.

Aufgabe 6.2. An alternative root-finding algorithm (see also the Bisection method from the lecture) is the so called *secant method*. Let $f : [a, b] \to \mathbb{R}$. Given two initial guesses x_0 and x_1 , the appromation x_{n+1} is obtained as the root of the line through $(x_{n-1}, f(x_{n-1}))$ and $(x_n, f(x_n))$, i.e.,

$$x_{n+1} := x_n - f(x_n) \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)}$$

Write a function secant(x0,x1,tau), which performs the above iteration until either

$$|f(x_n) - f(x_{n-1})| \le \tau$$

or

$$|f(x_n)| \le \tau$$
 and $|x_n - x_{n-1}| \le \begin{cases} \tau & \text{for } |x_n| \le \tau, \\ \tau |x_n| & \text{else.} \end{cases}$

In the first case, print a warning to inform that the result is presumably wrong. The function returns x_n as the approximation of the root z_0 of f. Test your implementation with a suitable example. Then, write a main program, that reads x_0 and x_1 from the keyboard and displays x_n . Save your source code as secant.c into the directory serieo6.

Aufgabe 6.3. Expand *MinSort* from the lecture by a parameter type, such that the functions sorts a vector $x \in \mathbb{R}^n$ in ascending ascending order (type = 1) or in descending order (type = -1). Moreover, write a main-programme, that reads in x and type, calls *MinSort* and prints the sorted vector. The length n should be a constant in the main-programme, but your implementation of *MinSort* should work for arbitrary lengths. Save your source code as minsort.c into the directory serie06.

Aufgabe 6.4. The *bubblesort* algorithm is an inefficient, but short sorting algorithm which works as follows: You run through the entries of a given vector $x \in \mathbb{R}^n$ several times. For every run, each entry x_j of x is compared to its successor x_{j+1} . If $x_j > x_{j+1}$, then the two entries x_j and x_{j+1} are swapped. After the first complete run through the vector, one knows that (at least) the last element is sorted correctly, i.e. the last element x_n is the maximum of the vector. Thus, in the next run one only has to go up-to the last-but-one entry of the vector. How many loops do you need for this algorithm? Write a function bubblesort which sorts a given vector $x \in \mathbb{R}^n$ with this algorithm. Additionally, write a main program that reads in $x \in \mathbb{R}^n$ and sorts it. The length n should be constant. However, your function bubblesort should be programmed for arbitrary lengths n. Save your source code as bubblesort.c into the directory serie06.

Aufgabe 6.5. Implement the *Quicksort*-Algorithm, which sorts a vector $x \in \mathbb{R}^n$: To do so *Quicksort* chooses an arbitrary Pivot-element form x, e.g. x_1 . Then, x is split in to parts $x^{(<)}$ and $x^{(\geq)}$ and the Pivot-element x_1 : $x^{(<)}$ contains all the elements $\leq x_1$ and $x^{(\geq)}$ contains only elements $\geq x_1$. $x^{(<)}$ and $x^{(\geq)}$ are sorted recursively. Afterwards, the result is put together. The direct implementation of this algorithm, however, requires additional storage. To circumvent this, proceed as follows: Starting with j = 2 search for and element $x_j \geq x_1$, i.e. x_j belongs to $x^{(\geq)}$. Furthermore, starting with k = n search

an element $x_k < x_1$, i.e. x_k belongs to $x^{(<)}$. In that case, swap x_j and x_k . If j and k coincide then x has already the form $(x_1, x^{(<)}, x^{(\geq)})$. With one additional swap, the form $(x^{(<)}, x_1, x^{(\geq)})$ is obtained immediately. It remains to sort $x^{(<)}$ and $x^{(\geq)}$ recursively. Moreover, write a main-programme, that reads in x and calls Quicksort. The length n should be a constant in the main-programme, but your implementation of Quicksort should work for arbitrary lengths. Save your source code as quicksort.c into the directory serie06.

Aufgabe 6.6. Let the two series

$$a_N := \sum_{n=0}^N \frac{1}{(n+1)^2}$$
 und $b_M := \sum_{m=0}^M \sum_{k=0}^m \frac{1}{(k+1)^2(m-k+1)^2}$

be given. Write a program that measures the time used for the computation of a_N resp. b_M for different values of N resp. M. Print out the results tabularly. Do the results meet your expectations? Save your source code as timing.c into the directory serie06. *Hint:* Think of the computational complexity (Aufwand) for the computation of a_N resp. b_M .

Aufgabe 6.7. You place your money with your trusted bank for a fixed annual percentage rate. Write a function capital which computes your capital after $n \in \mathbb{N}$ years for a fixed annual percentage p (in percent %), and your starting capital $x \in \mathbb{R}_{>0}$. The function should print out your money as follows

Year	Capital
====	======
0	1000.00
1	1010.00
2	1020.10
3	1030.30
 10	 1104.62

For this example holds p = 1, n = 10, and x = 1000.00. Furthermore, write a function runtime which computes how long (at least) you have to wait to increase your starting capital x to x_{\max} for a fixed percentage p. The function reads in x, p, and x_{\max} . Additionally, write a main program that tests both functions. How long does it take to be a millionaire, if you invest x = 1000 with a fixed percentage p = 4? Save your source code as capital.c into the directory serie06.

Aufgabe 6.8. What is the best and worst case for the computational cost of the Bubblesort algorithm from Exercise 6.4? Explain your answer!