Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 11

Aufgabe 11.1. Write a class Alcohol for the storage of different alcoholic drinks. The class should contain the following members: name, alcoholic strength percent, price in $€$. Moreover, implement an appropriate constructor and overload operator<, that compares two objects of the class with respect to the ratio $\frac{\text { Vol. } \%}{€}$. Additionally, implement the methods getName(), getPrice(), and getVolPercent(). Hint: In general, the operator < is overloaded by the syntax

```
bool operator<(const type& lhs, const type& rhs);
```

Here, type is an arbitrary datatype. In our case it is Alcohol.
Aufgabe 11.2. Write a class Matrix for the storage of $m \times n$ matrices $A \in \mathbb{R}^{m \times n}$. The entries should be stored columnwise by a double*-array of length $m n$. Write get/set-methods for the entries of the matrix and get-methods for the dimensions. Moreover, write a constructor with input $m, n \in \mathbb{N}_{0}$, that allocates memory for a $m \times n$ matrix and initializes all entries with 0 . Implement the standard constructor which generates a 0×0-matrix as well as a destructor which frees allocated memory. Save your source code as matrix. $\{\mathrm{hpp} / \mathrm{cpp}\}$ into the directory serie11.

Aufgabe 11.3. Extend the class Matrix from Exercise 11.2 by the following methods:

- an assignment operator,
- a copy-constructor,
- an operator to be able to perform $-A$,
- a method scanMatrix (int n ,int m), which reads a $n \times m$-Matrix from the keyboard,
- a method printMatrix() which prints a matrix on screen,
- and a method transpose, which overwrites a stored matrix with the transposed matrix. (Hint: The transposed $A^{T} \in A \in \mathbb{R}^{n \times m}$ of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by the condition $\left(A^{T}\right)_{j} k=A_{k} j$. We then have $\left(A^{T}\right)^{T}=A$.)

Moreover, write a main programm to test your implemented methods. Save your source code as matrix. $\{\mathrm{hpp} / \mathrm{cpp}\}$ into the directory serie11.

Aufgabe 11.4. A lower triangular matrix $L \in \mathbb{R}^{n \times n}$ with

$$
L=\left(\begin{array}{ccccc}
\ell_{11} & & & & \mathbf{0} \\
\ell_{21} & \ell_{22} & & & \\
\ell_{31} & \ell_{32} & \ell_{33} & & \\
\vdots & \vdots & \vdots & \ddots & \\
\ell_{n 1} & \ell_{n 2} & \ell_{n 3} & \ldots & \ell_{n n}
\end{array}\right)
$$

has at most $\frac{n(n+1)}{2}=\sum_{j=1}^{n} j$ nontrivial coefficients. Write a class matrixL to save the coefficients $L_{i j}$ in a dynamical vector with length $\frac{n(n+1)}{2}$ together with the dimension $n \in \mathbb{N}$. Save the matrix L row-wise. Implement the following features:

- constructor, copy-constructor, destructor,
- assignment operator,
- access to the coefficients via $L(i, j)$ and
- the possibility to print a lower triangular matrix L on screen via cout << L.

Moreover, write a main-program to test your implementation.
Aufgabe 11.5. Overload the operator + for the class MatrixL from Exercise 11.4 to be able to add to lower triangular matrices with matching dimensions. Moreover, write a main-programm to test your implementation.

Aufgabe 11.6. Use the formula for the matrix-matrix product to show that the product of two lower triangular matrices is a lower triangular matrix. Then, overload the operator $*$ for the class MatrixL from Exercise 11.4 to be able to perform the matrix-matrix product for two lower triangular matrices with matching dimensions. Moreover, write a main-program to test your implementation.

Aufgabe 11.7. Let $L \in \mathbb{R}^{n \times n}$ be a lower triangular matrix such that $\ell_{j j} \neq 0$ for all $1 \leq j \leq n$. Given $b \in \mathbb{R}^{n}$, there exists a unique $x \in \mathbb{R}^{n}$ such that $L x=b$. Implement also the feature to solve the system $L x=b$ for a lower triangular matrix $L \in \mathbb{R}^{n \times n}$ and a vector $b \in \mathbb{R}^{n}$ by using the command $\mathrm{x}=\mathrm{L} \mid \mathrm{b}$. L has the type MatrixL from Exercise 11.4 and b has the well-known type Vector from the lecture. Moreover, write a main-program to test your implementation.

Aufgabe 11.8. Explain the differences between references and pointers. Write some code which swaps the values of two variables. Implement a version which uses pointers and then implement a second version which uses references. What are the advantages of using references? What are the disadvantages?

