Übungen zur Vorlesung Einführung in das Programmieren für TM

Serie 5

Aufgabe 5.1. Schreiben Sie eine nicht-rekursive Funktion power, die für gegebene reelle Zahlen x > 1 und C > 0 die kleinste Zahl $n \in \mathbb{N}$ berechnet mit $x^n > C$. Dabei soll die Funktion \log nicht verwendet werden. Stellen weiters Sie mittels assert sicher, dass x > 1 und C > 0 gilt. Schreiben Sie ferner ein aufrufendes Hauptprogramm, in dem x und C eingelesen werden und n ausgegeben wird. Speichern Sie den Source-Code unter power.c in das Verzeichnis serie05.

Aufgabe 5.2. Die Quotientenfolge $(a_{n+1}/a_n)_{n\in\mathbb{N}}$ zur Fibonacci-Folge $(a_n)_{n\in\mathbb{N}}$,

$$a_0 := 1$$
, $a_1 := 1$, $a_n := a_{n-1} + a_{n-2}$ für $n \ge 2$,

konvergiert gegen den goldenen Schnitt $(1+\sqrt{5})/2$. Insbesondere konvergiert die Differenz

$$b_n := \frac{a_{n+1}}{a_n} - \frac{a_n}{a_{n-1}}$$

gegen Null. Schreiben Sie eine nicht-rekursive Funktion cauchy, die zu gegebenem $k \in \mathbb{N}$ die kleinste Zahl $n \in \mathbb{N}$ mit $|b_n| \leq 1/k$ zurückgibt. Schreiben Sie ferner ein aufrufendes Hauptprogramm, das die Zahl $k \in \mathbb{N}$ einliest und den zugehörigen Index $n \in \mathbb{N}$ ausgibt. Speichern Sie den Source-Code unter goldenerSchnitt.c in das Verzeichnis serie05.

Aufgabe 5.3. Für eine differenzierbare Funktion $f:[a,b]\to\mathbb{R}$ kann man die Ableitung f'(x) in einem festen Punkt $x\in\mathbb{R}$ durch den einseitigen Differenzenquotienten

$$\Phi(h) := \frac{f(x+h) - f(x)}{h} \quad \text{für } h > 0$$

approximieren. Schreiben Sie eine Funktion double diff(double x, double h0, double tau), die für $h_n := 2^{-n}h_0 \ (n \in \mathbb{N})$ die Folge der $\Phi(h_n)$ berechnet, bis gilt

$$|\Phi(h_n) - \Phi(h_{n+1})| \le \begin{cases} \tau & \text{falls } |\Phi(h_n)| \le \tau, oder \\ \tau |\Phi(h_n)| & \text{anderenfalls.} \end{cases}$$

Die Funktion liefere in diesem Fall $\Phi(h_n)$ als Approximation von f'(x) zurück. Stellen Sie mittels assert sicher, dass $\tau, h_0 > 0$ gilt. Die Funktion soll mit einer beliebigen reellwertigen Funktion double f(double x) arbeiten. Schreiben Sie ferner ein aufrufendes Hauptprogramm, in dem x, h_0 und τ eingelesen werden und $\Phi(h_n)$ ausgegeben wird. Wie und mit welchen Beispielen können Sie Ihren Code auf Korrektheit testen? Speichern Sie den Source-Code unter diff.c in das Verzeichnis serie05.

Aufgabe 5.4. Alternativ zum Bisektionsverfahren aus der Vorlesung kann eine Nullstelle von $f:[a,b] \to \mathbb{R}$ auch mit dem *Sekantenverfahren* berechnet werden. Dabei sind x_0 und x_1 gegebene Startwerte und man definiert induktiv x_{n+1} als Nullstelle der Geraden durch $(x_{n-1}, f(x_{n-1}))$ und $(x_n, f(x_n))$, d.h.

$$x_{n+1} := x_n - f(x_n) \frac{x_{n-1} - x_n}{f(x_{n-1}) - f(x_n)}$$

Schreiben Sie eine Funktion sekante(x0,x1,tau) die die Folge der Iterierten berechnet, bis entweder

$$|f(x_n) - f(x_{n-1})| \le \tau$$

oder

$$|f(x_n)| \le \tau$$
 und $|x_n - x_{n-1}| \le \begin{cases} \tau & \text{für } |x_n| \le \tau, \\ \tau |x_n| & \text{sonst} \end{cases}$

gilt. Es werde dann x_n als Approximation einer Nullstelle z_0 von f zurückgegeben. Im ersten Fall gebe man zusätzlich eine Warnung aus, dass das numerische Ergebnis vermutlich falsch ist. Stellen Sie mittels assert sicher, dass $\tau > 0$ gilt. Die Funktion soll mit einer beliebigen reellwertigen Funktion double $f(double \ x)$ arbeiten. Schreiben Sie ein aufrufendes Hauptprogramm, in dem x_0 und x_1 eingelesen werden und x_n ausgegeben wird. Wie und mit welchen Beispielen können Sie Ihren Code auf Korrektheit testen? Speichern Sie den Source-Code unter sekante.c in das Verzeichnis serie05.

Aufgabe 5.5. Eine Variante zur Berechnung einer Nullstelle einer Funktion $f:[a,b]\to\mathbb{R}$ ist das Newton-Verfahren. Ausgehend von einem Startwert x_0 definiert man induktiv eine Folge $(x_n)_{n\in\mathbb{N}}$ durch

$$x_{k+1} = x_k - f(x_k)/f'(x_k).$$

Man realisiere das Newton-Verfahren in einer Funktion double newton(double x0, double tau), wobei die Iteration abgebrochen wird, falls entweder

$$|f'(x_n)| \le \tau$$

oder

$$|f(x_n)| \le \tau$$
 und $|x_n - x_{n-1}| \le \begin{cases} \tau & \text{für } |x_n| \le \tau, \\ \tau |x_n| & \text{sonst} \end{cases}$

gilt. Im ersten Fall gebe man zusätzlich eine Warnung aus, dass das numerische Ergebnis vermutlich falsch ist. Stellen Sie mittels assert sicher, dass $\tau > 0$ gilt. Die Funktion soll mit einer beliebigen reellwertigen Funktion double f(double x) und Ableitung double fstrich(double x) arbeiten. Schreiben Sie ein aufrufendes Hauptprogramm, in dem x_0 eingelesen und x_n ausgegeben wird. Wie und mit welchen Beispielen können Sie Ihren Code auf Korrektheit testen? Speichern Sie den Source-Code unter newton.c in das Verzeichnis serie05.

Aufgabe 5.6. Das Newton-Verfahren aus Aufgabe 5.5 benötigt neben der Funktion f auch eine Funktion fstrich, die die Ableitung f' der Funktion f auswertet. Alternativ kann man $f'(x_k)$ durch den Differenzenquotienten $\Phi_h(x_k)$ aus Aufgabe 5.3 ersetzen. Realisieren Sie dieses Vorgehen indem Sie eine Funktion double newton2(double x0, double h0, double tau) schreiben, die zur Approximation der Ableitung $f'(x_k)$ das Ergebnis von diff(xk,h0,tau) verwendet. Stellen Sie mittels assert sicher, dass $\tau, h_0 > 0$ gilt. Wie und mit welchen Beispielen können Sie Ihren Code auf Korrektheit testen? Speichern Sie den Source-Code unter newton2.c in das Verzeichnis serie05.

Aufgabe 5.7. Was ist der Unterschied und der Zusammenhang zwischen einer Variable und einem Pointer? Was könnten Vor- und Nachteile dieser Konstrukte sein?

Schreiben Sie eine Funktion swap, welche die Werte zweier Variablen x und y vertauscht. Warum funktioniert das folgende Vorgehen nicht?

```
void swap(double x, double y)
{
   double tmp;
   tmp = x;
   x = y;
   y = tmp;
}
```

Speichern Sie den Source-Code unter swap.c in das Verzeichnis serie05.

Aufgabe 5.8. Wo liegen die Fehler im folgenden Programm?

```
#include <stdio.h>
void square(double* x)
{
  double* y;
```

```
x=(*y)*(*x);
}
int main(){
  double x=2.1;
  square(&x);
  printf("x^2=%f\n",x);
  return 0;
}
```

Verändern Sie nur die Funktion square, so dass der Output des Codes den Erwartungen entspricht.