Dirk Praetorius, Wintersemester 2017/18
Michele Ruggeri 9./10.11.2017

Ubungen zur Vorlesung
Einfiihrung in das Programmieren fiir TM

Serie 3

Aufgabe 3.1. Write a void-function divisor which checks if a given number z € N := {1,2,3,...}
is divisible by 2, 3, or 6. Additionally, write a main program that reads in the number z, then calls
the function divisor, and prints out the result. Save your source code as teiler.c into the directory
serie03.

Aufgabe 3.2. Write a void-function curve_sketching which does a curve sketching for a quadratic
function p(z) = a + bxr + cx? with coefficients a,b,c € R. If existing, compute the extremum (and
which kind of extremum it is). Additionally, if existing, compute the roots of the function. Otherwise,
print on the screen, that the function does not have an extremum resp. roots. Moreover, write a main
program which reads in the parameters a,b, ¢ and which calls the function. Save your source code as
curve_sketching.c into the directory serie03.

Aufgabe 3.3. Write a void-function money that calculates given an amount of money n € N the minimal
number of bank notes (500€, 100€, 50€, 20€, 10€, 5€) resp. coins (2€, 1€) such that the sum equals
the value of n. This number shall be displayed on the screen. For example, for n = 351, one should get
the following output

3 x 100 EUR
1 x 50 EUR
1 x 1 EUR

Write a main program which reads the value n € N and which calls the function money. Save your source
code as money.c into the directory serie03.

Aufgabe 3.4. Write a program that allocates a static vector = of length 1000. The coefficients shall
satisfy z[i] =4 for all ¢ € {0,1,...,999}. Next, the vector shall be displayed on the screen. You must not
use for-loops. Save your source code as array.c into the directory serie03.

Hint: Write functions createVector and printVector that are called in the main program.

Aufgabe 3.5. Write a recursive function double powN(double x, int n) which computes 2" for all
exponents n € Z and x € R. It holds 2 = 1 for all x € R\ {0}. For n < 0 use 2™ = (1/x)~". Moreover,
0™ = 0 for n > 0. The term 0™ for n < 0 is not defined. In that case, the function should return the value
0.0/0.0. You must not use the function pow from the math library. Save your source code as powN.c
into the directory serie03.

Aufgabe 3.6. One way (not the best way) to approximate the number 7 is the so called Leibniz formula

o0
B (—1)k
”_;} %+ 1

W~

The n-th partial sum

_ A=Y
T n+1

P(n) +P(n—1)

can be interpretated as a recursive function and it holds lim,_, P(n) = w. Write a function double
P(int n) that computes P(n). Moreover, write a main program that reads n € N from the keyboard
and prints out the resulting n-th partial sum P(n). Save your source code as pirecursive.c into the
directory serie03.



Aufgabe 3.7. According to an old legend, there was a temple in Hanoi, which contained a large room
with three time-worn posts in it surrounded by 64 golden disks of different diameters. When the temple
was erected, the disks were arranged in a neat stack in ascending order of size on the first rod, the
smallest at the top, thus making a conical shape. Since that time, the temple priests have been moving
the disks with the objective of moving the entire stack to the third rod (preserving the ascending order).
The second rode is auxiliary. All disk movements must be in accordance with the following immutable
rules:

e Only one disk can be moved at a time.

e Each move consists of taking the upper disk from one of the stacks and placing it on top of another
stack, i.e., a disk can only be moved if it is the uppermost disk on a stack.

e No disk may be placed on top of a smaller disk.

According to the legend, when the last move will be completed, the world will end.

The task can be accomplished with the use of a recursive algorithm. Let n denote the total number of
disks (n = 64 in the original legend). In order to move the upper m < n disks located on the i-th rode
to the j-th rod (4,5 € {1,2,3}), proceed as follows:

1. Move the upper m—1 disks from the i-th rod to the k-th rod, with k & {1, j};
2. The largest of the m disks is now on the top of the i-th rod and can be moved to the j-th rod;
3. Finally, the m—1 disks from in Step 1 can be moved from the k-th rod to the j-th rod.

The choice of m = n, ¢ = 1 and j = 3 in the above algorithm solves the priest task. Please write
a recursive function void hanoi(int m, int i, int j) which implements the algorithm. Any single
movement of any disk must be printed out on the screen, e.g.,

Move a disk from Rode 2 to Rode 3.

Furthermore, write a main program that reads n from the keyboard and prints out the list of all move-
ments. To test the algorithm, use n <« 64, e.g., n = 3,4,5. Save your source code as hanoi.c into the
directory serie03.



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Aufgabe 3.8. Recall the meanings of the terms Lifetime € Scope. What is the output of the following
code lines and explain why?

#include <stdio.h>

int max(int,int);

main() {
int x = 1;
int y = 2;
int z = 3;

printf (" (x,y,z) = (hd,%d,%d)\n",x,y,2);

{
x = 100;
y =4
int z = max(x,y);
printf (" (x,y,z) = (d,%d,%d)\n",x,y,2);

{
X =Y;
int y = 200;

printf (" (x,y,z) = (%d,%d,%d)\n",x,y,2);
}
printf (" (x,y,z) = (%d,%d,%d)\n",x,y,2);
}
printf (" (x,y,z) = (4d,%d,%d)\n",x,y,2);
3

int max(int x, int y) {
if (x>=y) {
return Xx;
}
else {
return y;
}
}

Draw a timeline and visualize the lifetime and the scope of the variables x,y,z. Moreover, mark all
blocks and functions.



