
Dirk Praetorius, Wintersemester 2017/18
Michele Ruggeri 30.11./01.12.2017

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 6

Aufgabe 6.1. Write a function int anagram(char* firstStr, char* secondStr) which checks if a
given word is an anagram of a second given word. An anagram of a word is a letter sequence which is
generated by permutation, e.g., ”Elvis” is an anagram of ”lives”.
Moreover, write a main program which reads in two words and checks if one is an anagram of the other. If
this is the case, let anagram return 1. Else, let anagram return 0. How did you test your implementation?
Save your source code as anagram.c into the directory serie06.

Aufgabe 6.2. For given values x1 < · · · < xn and function values yj ∈ R linear algebra yields existence
of a unique polynomial p(t) =

∑n
j=1 ajt

j−1 of degree n−1, which satisfies p(xj) = yj for all j = 1, . . . , n.
For a given t ∈ R, the so-called Neville’s algorithm is a method to evaluate p(t) without the calculation
of the coefficient vector a ∈ Rn: For j,m ∈ N with m ≥ 2 and j + m ≤ n + 1 one defines

pj,1 := yj ,

pj,m :=
(t− xj)pj+1,m−1 − (t− xj+m−1)pj,m−1

xj+m−1 − xj
.

Then, it holds that p(t) = p1,n. Write a function neville with the input parameters t ∈ R and x, y ∈ Rn,
which computes p(t) with Neville’s algorithm. To this end, follow the schematic approach

y1 = p1,1 −→ p1,2 −→ p1,3 −→ . . . −→ p1,n = p(t)
↗ ↗ ↗

y2 = p2,1 −→ p2,2
↗ ↗

y3 = p3,1 −→
...

...
...

... ↗
yn−1 = pn−1,1 −→ pn−1,2

↗
yn = pn,1

The mathematical justification of Neville’s algorithm will be given in the numerics lecture. At first, build
the whole matrix (pj,m)nj,m=1. Save your source code as neville.c into the directory serie06. Test your
code with a known polynomial p and yj = p(xj).

Aufgabe 6.3. For the implementation Neville’s algorithm from Exercise ??, the storage of the complete
matrix (pj,m)nj,m=1 is unnecessary. Instead, one can overwrite the values yj in an appropriate way. In
this way, no additional memory is required. Write a function neville2 in which you implement this
improvement. How did you test your implementation? Save your source code as neville2.c into the
directory serie06.

Aufgabe 6.4. Write a library for columnwise(!) stored m×n-matrices. Implement the following functions

• double* mallocmatrix(int m, int n)

Allocates memory for a columnwise stored m× n matrix.

• double* freematrix(double* matrix)

Frees memory of a matrix.

• double* reallocmatrix(double* matrix, int m, int n, int mNew, int nNew)

Reallocates memory and initializes new entries.

Store the signatures of the functions in the header file dynamicmatrix.h. Write also appropriate com-
ments to these functions in the header file. The file dynamicmatrix.c should contain the implementations
of the above functions. Use dynamical arrays. How did you test the correctness of your code?

Aufgabe 6.5. Expand the library from Exercise 6.4 by the following functions.

• void printmatrix(double* matrix, int m, int n)

Prints the column-wise-saved m×n-Matrix on screen. The 2×3-Matrix double matrix[6]={1,2,3,4,5,6}
shall look like in the following example:

1 3 5

2 4 6

• double* scanmatrix(int m, int n)

Allocates memory for a matrix and scans the coefficients from keyboard-entry.

• double* cutOffRowJ(double* matrix, int m, int n, int j)

Cuts off the j-th line from a m× n-Matrix.

• double* cutOffColK(double* matrix, int m, int n, int k)

Cuts off the k-th column from a m× n-Matrix.

Use dynamical arrays. How did you test the correctness of your code?

Aufgabe 6.6. The row-sum norm of a matrix A ∈ Rm×n is defined by

‖A‖ = max
j=1,...,m

n∑
k=1

|Ajk|.

Write a function rowsumnorm, which computes the row-sum norm of a columnwise stored matrix A.
Furthermore, write a main program that reads A from the keyboard and prints the value ‖A‖ to the
screen. How did you test the correctness of your code? What is the computational cost of your function?
If the function has a runtime of 0.1 seconds for n = m = 104, which runtime do you expect for n = m =
3 · 105? Save your source code as rowsumnorm.c into the directory serie06..

Aufgabe 6.7. Write functions int countValueInRow(int** matrix, int m, int n, int val, int

row) and int countValueInColumn(int** matrix, int m, int n, int val, int col) which return
the number of entries that equal val in the given row row resp. column col of an m × n-matrix. How
did you test the correctness of your code? Save your source code as countValueInRowCol.c into the
directory serie06.

Aufgabe 6.8. Implement the well-known game Tic Tac Toe, e.g., in the following way:

int player=1;

int winner;

int** playboard = newPlayboard();

resetPlayboard(playboard);

while(!isGameFinished(playboard)){ // no winner yet & free squares.

makeMove(playboard,player); // read move from the keyboard

// and save it.

printPlayboard(playboard); // print the current situation on screen.

player=changePlayer(player); // change player.

}

winner=getWinner(playboard);

printWinnerMessage(winner);

delPlayboard(playboard);

Here, the function makeMove should ask the player for his move until it is valid (squares must not be over-
written). Moreover, use Exercise 6.7 for the function getWinner. Finally, the function isGameFinished

may call the function getWinner. Save your source code as tictactoe.c into the directory serie06.

