
Dirk Praetorius, Wintersemester 2017/18
Michele Ruggeri 07.12.2017

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 7

Aufgabe 7.1. Write a structure cdouble to store the real part a ∈ R and the imaginary part b ∈ R of a
complex number a + bi ∈ C as double variables. The imaginary unit i satisfies the identity i2 = −1; see

https://en.wikipedia.org/wiki/Complex_number.

Implement the functions

• cDouble* newCDouble(double a, double b),

• cDouble* delCDouble(cDouble* z)

as well as the mutator functions

• void setCDoubleReal(cDouble* z, double a),

• double getCDoubleReal(cDouble* z),

• void setCDoubleImag(cDouble* z, double b),

• sowie double getCDoubleImag(cDouble* z).

How did you test your implementation? Save the source code, split into a header file cdouble.h and
cdouble.c, into the directory serie07.

Aufgabe 7.2. Write the functions

• cDouble* cAdd(cDouble* z, cDouble* w),

• cDouble* cSub(cDouble* z, cDouble* w),

• cDouble* cMult(cDouble* z, cDouble* w),

• cDouble* cDiv(cDouble* z, cDouble* w),

which realize addition, subtraction, multiplication, and division of complex numbers. Moreover, imple-
ment the functions

• double cNorm(cDouble* z), which computes and returns the modulus |z| =
√
a2 + b2 of a complex

number z = a + ib ∈ C,

• cDouble* cConj(cDouble* z), which computes and returns the conjugate z = a − ib ∈ C of a
complex number z = a + ib ∈ C.

Use the structure cDouble from Exercise 7.1. In particular, access the elements of the structure by using
the appropriate functions. Write a main program, which reads two complex numbers w, z ∈ C from
the keyboard and prints to the screen the quantities |w|, |z|, w + z, w − z, wz, and w/z (provided
that z 6= 0). How did you test your implementation? Save your source code as carithmetik.c into the
directory serie07.

Aufgabe 7.3. Write a structure CPoly for the storage of polynomials, where the coefficients are complex
numbers, i.e., p(x) =

∑n
j=0 ajx

j with aj ∈ C. The structure should contain the degree n ∈ N and the

coefficients (a0, . . . , an) ∈ Cn+1. Use the structure from Exercise 7.1. Moreover, implement the functions
newCPoly, delCPoly, getCPolyDegree, getCPolyCoefficient, and setCPolyCoefficient. How did
you test your implementation? Save your source code as cpoly.c into the directory serie07.

https://en.wikipedia.org/wiki/Complex_number

Aufgabe 7.4. Write a function addCpolynomials that computes the sum r = p + q of two complex
polynomials p, q and returns r. Use the structure from Exercise 7.3. Moreover, write a main program that
reads in two polynomials p, q and prints out the sum r = p + q. How did you test your implementation?
Save your source code as addcpoly.c into the directory serie07.

Aufgabe 7.5. Write a structure data-type SquareMatrix for the storage of quadratic matrices A ∈
Rn×n. The structure contains the dimension n ∈ N and the entries given as double*, i.e., the entries of the
matrix have to be stored columnwise. In contrast to the usual indexing in C (e.g., the indexing considered
in the lecture), let the indices for the matrix entries ajk of your structure SquareMatrix go from j, k = 1
to n (as it is common in mathematics). Moreover, implement the necessary functions to work with this
structure, i.e., newSquareMatrix, delSquareMatrix, getSquareMatrixN, getSquareMatrixEntry, and
setSquareMatrixEntry. How did you test your implementation? Save the source code, split into a header
file squarematrix.h and squarematrix.c, into the directory serie07.

Aufgabe 7.6. The Laplace formula states that, for each j ∈ {1, . . . , n}, it holds that

detA =

n∑
k=1

(−1)j+k · ajk · detAjk,

where ajk are the entries of A and Ajk is the (n− 1)× (n− 1)-submatrix of A obtained by removing the
j-th row and the k-th column from A. Note that the determinant of a 1× 1-matrix (∈ R) is the number
itself. Write a recursive function double detlaplace(SquareMatrix* A), which applies the Laplace
formula to compute the determinant det(A) of a matrix A ∈ Rn×n. Use the structure SquareMatrix

from Exercise 7.5. How did you test your implementation? Save your source code as detlaplace.c into
the directory serie07.

Aufgabe 7.7. A matrix A ∈ Rn×n admits a normalized LU-factorization A = LU if
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


1 0 . . . 0

`21 1
. . .

...
...

. . .
. . . 0

`n1 . . . `n,n−1 1




u11 u12 . . . u1n

0 u22
. . .

...
...

. . .
. . . un−1,n

0 . . . 0 unn

 .

If A admits a normalized LU-factorization, it holds that

uik = aik −
i−1∑
j=1

`ijujk for i = 1, . . . , n, k = i, . . . , n,

`ki =
1

uii

(
aki −

i−1∑
j=1

`kjuji

)
for i = 1, . . . , n, k = i + 1, . . . , n,

`ii = 1 for i = 1, . . . , n.

The remaining coefficients of L,U ∈ Rn×n are zero. This can be easily shown by using the formula
for the matrix-matrix product. Write a function SquareMatrix* computeLU(SquareMatrix* A), which
computes and returns the LU-factorization of A. To use the above formulae, compute the coefficients
of L and U in an appropriate order (i.e., what you need must already be computed). Use the structure
SquareMatrix from Exercise 7.5. Write a main program to test the function computeLU on a suitable
example. How did you test your implementation? Save your source code as computeLU.c into the directory
serie07.

Aufgabe 7.8. What is the system of floating-point numbers? Which parts does a floating-point number
consist of? How can you determine its value? What is the meaning of Inf, -Inf, and NaN? What is a
normalized floating-point number? What is an implicit leading bit? Which are the values of the largest
and the smallest positive normalized floating point number in the float-system F(2, 24,−126, 127)?

