Dirk Praetorius, Wintersemester 2017/18
Michele Ruggeri 21./22.12.2017

Ubungen zur Vorlesung
Einfiihrung in das Programmieren fiir TM

Serie 9

Aufgabe 9.1. Extend the class Fraction from the lecture (slide 230) by the public method void
reduce () that determines the reduced form of the fraction numerator/denominator. Use the euclidean
division algorithm. Moreover, implement the method setValue(string value) that converts an arbi-
trary number, given as a string, into a fraction. For the implementation you can proceed as follows:
First, find the decimal-point in the string and count the number of positions after the decimal-point.
Then, erase the decimal-point from the string. The string now represents a natural number and can
be converted into an int variable by use of the function atoi. This number is used for the numerator.
Then, the denominator is set to 107, where p € N is the number of positions after the decimal-point.
Then, call the method reduce (). Finally, overload the method setValue in an appropiate way, so that
setValue(n) for n of type int makes sense. How did you test your implementation? Save your source
code as fraction.{hpp,cpp} into the directory serie09.

Hint: The method find of the class string allows you to find a specific character in the string, e.g.,
int pos = value.find(’.’) returns the position of the decimal-point in the string value. The call
value.erase(pos,k), erases k characters after the position pos in the string value. The function atoi
from the standard library cstdlib converts a given string (in C-style) to an int variable. To get the
string as char *, you can use the method c_str() of class string.

Aufgabe 9.2. Write a class University. This class should contain the members numStudents, city, and
name as well as the methods graduate, and newStudent. If the method graduate is called, the number
of students gets decreased by one, whereas if newStudent is called, the number of students increases by
one. All data members should be declared as private. Therefore, you have to implement get and set
methods. How did you test your implementation? Save your source code as university.{hpp,cpp} into
the directory serie09.

Aufgabe 9.3. For the HR-department of the University it can be tedious to add and delete students
one by one in their data. Therefore, overload the methods graduate and newStudent from the class
University from Exercise [9.2] so that the number of graduating and beginning students can be a
parameter of the methods. Moreover, write constructors which initialize your object with meaningful data.
If the object is not initialized directly, then set numStudents = 0, city = noWhere, name = noName.
Write a plot-routine to print the data of your object on screen. How did you test your implementation?
Save your source code as University.{hpp,cpp} into the directory serie09.

Aufgabe 9.4. Write a structure Matrix to save quadratic n X n double matrices. Distinguish between
fully-populated matrices (type ’F’), lower triangle matrices (type ’L’) and upper triangle matrices
(type ’U’). A lower triangular matrix L and an upper triangular matrix U have the following polulation
structure:

Ul Uz U3 ... Uiy i 0
U2 U23 ... U2p lor Lo
U= uzz ... Usp L= | f31 {32 Is3
0 Unn Enl £n2 £n3 .o ‘enn

We thus have u;;, = 0, if j > k and £;;, = 0, if j < k. A fully populated matrix should by stored in
Fortran-Style- therefore columnwise in a dynamical vector with n - n entries. triangle-matrices should be
stored in a vector with Z?=1 j =n(n+1)/2 entries. Implement the following functionalities:

e Default constructor, which allocates a 0 x 0 matrix of the type ’F’

e Constructor, which gets the type and the dimension as an input parameter
e Destructor

e get and set-methods for the matrix entries, the type and the dimension

The get and set-methods for the matrix entries depend on the type of the matrix. How did you test
your implementation? Save your source code as matrix.{hpp,cpp} into the directory serie09.

Aufgabe 9.5. Extend the class Matrix from Exercise [0.4] by

e a method scanMatrix(char typ, int n) to read the type and the matrix A € R™*" depending
on the type from the keyboard,

e a method printMatrix (), which prints the matrix to the screen,

e a method columnsumnorm(), which computes and returns the column sum norm
n—1
JAl = max > al,
k=0,....n—1 4
J=0
e a method rowsumnorm(), which computes and returns the row sum norm
n—1
Al = _max > jaul|.
7=0,...,n—1
k=0

Note that for lower resp. upper triangular matrizes the methods can access only coefficients aji re-
sp. a; with 0 < k < j < n — 1. How did you test your implementation? Save your source code as
matrix2.{hpp,cpp} into the directory serie09.

Aufgabe 9.6. Let U € R™™" be an upper triangular matrix such that U;; # 0 for all j =0,...,n— 1.
Given b € R™, there exists a unique = € R™ such that Uz = b. Derive a formula to compute the solution
xz € R™ of Uz = b by using the formula for the matrix-vector product and the simplifications thereof
which follows from the triangular structure of U. Implement a function which, given an upper triangular
matrix U € R™ ™ and a vector b € R", computes the solution of the system Uz = b. Use the class
Matrix from Exercise for U and the class Vector from the lecture for b (cf. slides 249). Use assert
to check that the dimensions match and that U;; # 0 for all j. Then, write a main program to test
your implementation accurately. How did you test your implementation? Speichern Sie den Source-Code
unter solveMatrixU.cpp in das Verzeichnis serie09.

Aufgabe 9.7. We consider the class Matrix from Exercise and Vector from the lecture (cf. slides
249). Implement the method solve for the class Matrix, which solves the linear system Az = b by using
the so-called Gaussian elimination. Consider a matrix A € R™*" (type Matrix) and a right-hand side
vector b € R™ (typ Vector). The algorithm reads as follows:

e First of all, the matrix A is converted into an equivalent upper triangular matrix. Note that also
the right-hand side vector b must be modified accordingly.

e The resulting system, characterized by an upper triangular matrix A, is then solved with Exerci-
se [9.0l

In particular, during the first elimination step, an appropriate multiple of the first row of the matrix is
subtracted from the remaining rows so to obtain a matrix of the form

a1 a2 oo Q1p
0 ag9 ... Qop

In the second elimination step, an appropriate multiple of the second row of the matrix is subtracted
from the remaining rows so to obtain a matrix of the form

ailp a2 aiz ... GQin

0 a2 ass P agn

A= 0 0 ass .o Q2p
0 0 ang ... Qun

After n — 1 elimination steps, one obtains an upper triangular matrix A. Use assert to ensure that, in
the k-th elimination step, the condition axi # 0 is satisfied. Don’t forget that also the right-hand side
vector b € R™ must be modified accordingly. Then you can use exercise to solve the system Az = b
where A is an upper triangular matrix. What is the computational cost of your implementation of the
Gaussian elimination and why? To understand the algorithm, start with simple examples with A € R2x2
and A € R3*3. How did you test your implementation? Save your source code as gauss.cpp into the
directory serie09.

Aufgabe 9.8. The Gaussian elimination algorithm from Exercise [9.7] fails when it happens that az, = 0
in the k-th elimination step. This can happen even when the linear system Ax = b has a unique solution
x. To avoid this, the algorithm is usually extended with the so-called pivoting:

e During the k-th step, choose amongst ay, .. ., ani the element ay, with the largest absolute value.
e Swap the k-th and the p-th row of A (and b).
e Perform the elimination step as before.

Implement for the class Matrix from Exercise the method gausspivot, which computes the solution
of the system Az = b following the aforementioned strategy. (It is possible to prove that the Gaussian
elimination algorithm with pivoting can be successfully applied if and only if the linear system Ax = b
admits a unique solution. A proof of this result is given in the lecture on numerical mathematics.) How
did you test your implementation? Save your source code as gausspivot.cpp into the directory serie09.

