
Dirk Praetorius, Wintersemester 2017/18
Michele Ruggeri 18./19.01.2018

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 11

Aufgabe 11.1. Explain the differences between public-, private-, und protected-inheritance on the
basis of a suitable exapmle.

Aufgabe 11.2. Implement the class Person which contains the members name and address. Derive from
Person the class Student, that contains the additional data fields matriculationNumber and study.
Derive from Person also the class Worker that contains the additional data fields salary and work.
Write set/get functions, constructors, and destructors for all classes. Moreover, write a main progam
to test your implementation!

Aufgabe 11.3. Implement the method print for the basis class Person from Exercise 11.2. The method
should print to the screen name and address of a person. Redefine this function for the derived classes
Student and Worker so that also the additional data fields of these classes are printed. Moreover, write
a main programm to test the print-methods of the different classes.

Aufgabe 11.4. Derive the class SquareMatrix from the class Matrix from the lecture. This class is
used to store square matrices and should contain all functionalities from the basis class Matrix. Test
your implementation accurately!

Aufgabe 11.5. Consider the class Matrix and the derived class SquareMatrix.Implement the method
computeLU that computes the LU-factorization in the class SquareMatrix. The method returns a matrix
R ∈ Rn×n of type SquareMatrix whose upper and lower triangular parts contain the entries of L and
U .The diagonal of L does not need to be stored. Why? Not every matrix A ∈ Rn×n has a normalized
LU-factorization A = LU , i.e.,

a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


1 0 . . . 0

`21 1
. . .

...
...

. . .
. . . 0

`n1 . . . `n,n−1 1




u11 u12 . . . u1n

0 u22
. . .

...
...

. . .
. . . un−1,n

0 . . . 0 unn

 .

In the case that such a factorization exists, it holds that

uik = aik −
i−1∑
j=1

`ijujk for i = 1, . . . , n, k = i, . . . , n,

`ki =
1

uii

(
aki −

i−1∑
j=1

`kjuji

)
for i = 1, . . . , n, k = i + 1, . . . , n,

`ii = 1 for i = 1, . . . , n,

which can be verified by using the formula for the matrix-matrix multiplication. All the remaining
entries of L,U ∈ Rn×n are trivial. The determinant of a matrix A ∈ Rn×n can be computed with the
normalized LU-factorization. It holds det(A) = det(L) det(U) = det(U) =

∏n
j=1 ujj . Extend the class

SquareMatrix by the method det which computes and returns the determinant. The matrix A should
not be overwritten. Test your implementation appropriately!

Aufgabe 11.6. Extend the class SquareMatrix by the method solve, which computes the solution of a
linear system of equations of the form Ax = b according to the following strategy: First, compute the LU
factorization A = LU . Then, then solve the system Ly = b and finally Ux = y. Test your implementation
accurately!

Aufgabe 11.7. What is the computational cost of your implementation of the method which solves a
linear system of equation via a LU factorization (Exercise 11.6)? Use the O-notation to write the result
and justify your answer.

Aufgabe 11.8. What is the output of the following programme? Explain why!

#include <iostream>

using std::cout;

using std::endl;

class BasisClass {

protected:

int N;

public:

BasisClass() {

N = 0;

cout << "Standard constr. BasisClass" << endl;

}

BasisClass(int n) {

N = n;

cout << "Constr. BasisClass, N = " << N << endl;

}

~BasisClass(){

cout << "Destr. BasisClass, N = " << N << endl;

}

BasisClass(const BasisClass& rhs) {

N = rhs.N;

cout << "Copy constr. BasisClass" << endl;

}

BasisClass& operator=(const BasisClass& rhs) {

N = rhs.N;

cout << "Assignment operator BasisClass" << endl;

return *this;

}

int getN() const { return N; }

void setN(int N) { this->N = N; }

};

class Derived : public BasisClass {

public:

Derived(){

cout << "Standard constr. Derived" << endl;

}

Derived(int n):BasisClass(n) {

cout << "Constr. Derived, N = " << N << endl;

}

~Derived() {

cout << "Destr. Derived, N = " << N << endl;

}

Derived(const Derived& rhs) {

N = rhs.N+7;

cout << "Copy constr. Derived" << endl;

}

Derived& operator=(const Derived& rhs) {

N = rhs.N;

cout << "Assignment operator Derived" << endl;

return *this;

}

};

Derived foo(Derived X){

Derived tmp(5);

tmp.setN(X.getN()*X.getN());

return tmp;

}

int main() {

Derived ah(10);

{

Derived gg(13);

BasisClass bs;

BasisClass mr=bs;

ah=gg;

}

ah=foo(ah);

return 0;

}

