Dirk Praetorius, Sommersemester 2018
Gregor Gantner 10.04.2018

Ubungen zur Vorlesung
Einfiihrung in das Programmieren fiir TM

Serie 4

Aufgabe 4.1. According to an old legend, there was a temple in Hanoi, which contained a large room
with three time-worn posts in it surrounded by 64 golden disks of different diameters. When the temple
was erected, the disks were arranged in a neat stack in ascending order of size on the first rod, the
smallest at the top, thus making a conical shape. Since that time, the temple priests have been moving
the disks with the objective of moving the entire stack to the third rod (preserving the ascending order).
The second rode is auxiliary. All disk movements must be in accordance with the following immutable
rules:

e Only one disk can be moved at a time.

e Each move consists of taking the upper disk from one of the stacks and placing it on top of another
stack, i.e., a disk can only be moved if it is the uppermost disk on a stack.

e No disk may be placed on top of a smaller disk.

According to the legend, when the last move will be completed, the world will end.

The task can be accomplished with the use of a recursive algorithm. Let n denote the total number of
disks (n = 64 in the original legend). In order to move the upper m < n disks located on the i-th rode
to the j-th rod (i,j € {1,2,3}), proceed as follows:

1. Move the upper m—1 disks from the i-th rod to the k-th rod, with &k & {1, j};
2. The largest of the m disks is now on the top of the i-th rod and can be moved to the j-th rod;
3. Finally, the m—1 disks from in Step 1 can be moved from the k-th rod to the j-th rod.

The choice of m = n, i = 1 and j = 3 in the above algorithm solves the priest task. Please write
a recursive function void hanoi(int m, int i, int j) which implements the algorithm. Any single
movement of any disk must be printed out on the screen, e.g.,

Move a disk from Rode 2 to Rode 3.

Furthermore, write a main program that reads n from the keyboard and prints out the list of all move-
ments. To test the algorithm, use n < 64, e.g., n = 3,4,5. Save your source code as hanoi.c into the
directory serie04.

Aufgabe 4.2. Write a recursive function papercut, which visualizes all the possibilities for cutting
a sheet of paper of integer length n into thin strips of length 1 and 2. Specifically, given a natural
number n, the function should determine all the possible representations of n of the form n = Zle oj
with o; € {1,2}. Here, the ordering of the sequence is important. For istance, for n = 4, there are 5
possibilities, namely

o 4=2+42

e 4=2+1+1
e 4=1+2+1
e 4=1+1+2

e 4=1+1+1+1

Moreover, write a main program, which reads n from the keyboard and prints to the screen all the
possibilities. Save your source code as papercut.c into the directory serie04.

Aufgabe 4.3. Implement the function int = binomial(int n, int k, int type) which computes
and returns the binomial coefficient (Z) using three different approaches:

e applying the formula (Z) = ﬁlk)” which exploits a function for computing the factorial (type=1),

n-(n—1)---(n—k+1)

)T driven by a suitable loop (type=2),

e using the expression () =

e in recursive form, exploiting the formula (7) = (") + (}}) (type=3).

The function should support all three options. Furthermore, write a main program, which reads n and &
from the keyboard and prints out the resulting binomial coefficient. Save your source code as binomial.c
into the directory serie04.

Aufgabe 4.4. A natural number a € N is called Armstrong number if and only if the sum of its digits to
the power of the number of digits coincides with a itself, i.e., a := 10" -a,, + 10" 2 - a1 +...+10° - a4
withn € N, a; € {0,1,...,9}, 0 < i <n, a, #0, is an Armstrong number, if a} +a} + ...+ a! = a. For
example, the first Armstrong numbers are 1,2,...,8,9,153,370,... Write a void function armstrong,
which, given a lower bound b € N and an upper bound ¢ € N with b < ¢, computes and returns all
Armstrong numbers within these bounds. Use assert to make sure that b < ¢. Write a main program
which reads the bounds from the keyboard and calls the function armstrong. How did you test the
correctness of your code? Save your source code as armstrong.c into the directory serie04.

Aufgabe 4.5. Write a main program which reads n € N from the keyboard and prints to the screen the
first n lines of Pascal’s triangle: Every line starts and ends with 1. The remaining entries are the sum of
two neighbouring entries from the line above. For n = 5, we obtain:

See also:
http://en.wikipedia.org/wiki/Pascal’s_triangle
Save your source code as pascal.c into the directory serie04.

Aufgabe 4.6. Write a function energy that returns the energy e = Z?=1 x? of a given vector x € R™.
Further, write a main program which reads in the vector z and calls the function The dimension n € N
is a constant in the main program, the function energy should be implemented for arbitrary dimensions.
How did you test the correctness of your code? Save your source code as energy.c into the directory
serie(4.

Aufgabe 4.7. The Frobenius-norm of a matrix A € R™*" is defined by

m n 1/2
JAlr = (3D 4%)

j=1k=1
Write a function frobeniusnorm which, given a matrix A as well as its dimensions m,n € N, computes
and returns the Frobenius norm. Furthermore, write a main program that reads in the input parameters
(matrix A and dimensions m,n), and prints out the corresponding Frobenius norm || A| r. The matrix
should be stored columnwise as a vector of length mn. The dimensions m,n € N should be constant in
the main program, but the function frobeniusnorm should be programmed for arbitrary dimensions.
Save your source code as frobeniusnorm.c into the directory serie04.

http://en.wikipedia.org/wiki/Pascal's_triangle

Aufgabe 4.8. Let x be a sequence of 10 numbers (static array of type int) and y a combination of
3 numbers (array of type int) which are both read from the keyboard. Write a function check that
obtains the two arrays as input and checks if the combination y is contained in the sequence z (return
value 1) or not (return value 0). Further, write a main program which reads in the arrays « and y and
calls the function. How did you test the correctness of your code? Save your source code as check.c into
the directory serie0O4.

