
Dirk Praetorius, Sommersemester 2018
Gregor Gantner 08.05.2018

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 7

Aufgabe 7.1. As for the contents of variables of elementary type (double,int,...), you can print
out the content of a pointer with help of printf. The place-holder %p is used for addresses (which
are the contents of pointers!). The output is system-dependent, but mostly in hexadecimal numbers.
Write a function void charPointerDist(char* startaddress, char* endaddress) that prints out
the following three values tabularly:
• Starting address
• End address
• Distance (difference) between both addresses (take care of the place-holder in printf!)

Since arrays are stored connectedly, the distance between two successive elements corresponds to the
memory used for the specific datatype. Test your function with a char-array c[2] and the following
calls:

charPointerAbstand(&c[0],&c[1]);

charPointerAbstand(c,c+1);

Then, write a function void doublePointerDist(double* startaddress, double* endaddress) and
test it with a double-array. Compare the differences between the results of the two functions. Find out
how much memory is used for the types short, int, and long on the lva.student server.

Aufgabe 7.2. The bubblesort algorithm is a sorting algorithm which works as follows: Run through
the entries of a given vector x ∈ Rn several times. For every run, each entry xj of x is compared to its
successor xj+1. If xj > xj+1, then the two entries xj and xj+1 are swapped. After the first complete run
through the vector, one knows that (at least) the last element is sorted correctly, i.e., the last element
xn is the maximum of the vector. Thus, in the next run, one only has to go up to the last-but-one entry
of the vector (and so on). How many loops do you need for this algorithm? Write a function bubblesort

which sorts a given vector x ∈ Rn in ascending order using this algorithm, i.e., x1 ≤ x2 ≤ · · · ≤ xn.
Additionally, write a main program, which reads the vector x and its length n from the keyboard, sorts
it with bubblesort and prints to the screen the sorted vector. What is the computational cost of your
function?
Hint: Use vectors with (pseudo-)random coefficients to empirically verify the correctness of your imple-
mentation. Random numbers between 0 and N (int) can be created as follows: First include the header
files stdlib.h and time.h into your program. The following code lines

srand((unsigned) time(NULL));

int randnumber = rand() % (N+1);

generate a random number between 0 and N . The variable randnumber has the type int. Save your
source code as bubblesort.c into the directory serie07.

Aufgabe 7.3. Write a function double* merge(double* a, int m, double* b, int n) which mer-
ges two vectors a ∈ Rm and b ∈ Rn, which are sorted in ascending order, into the vector c ∈ Rm+n in
such a way that c is also sorted in ascending order, e.g., the choices a = (1, 3, 3, 4, 7) and b = (1, 2, 3, 8)
lead to c = (1, 1, 2, 3, 3, 3, 4, 7, 8). The algorithm should exploit the fact that the input vectors a and b
are sorted. Write a main program that reads m,n ∈ N as well as a ∈ Rm and b ∈ Rn from the keyboard
and prints to the screen the resulting vector c ∈ Rm+n. Test your implementation in an appropriate way!
Save your source code as merge.c into the directory serie07.

Aufgabe 7.4. Write a recursive function void mergesort(double* x, int n) which sorts a vector
x ∈ Rn in ascending order using the mergesort algorithm. Use the following strategy:

• If n ≤ 2, then the vector x ∈ Rn is explicitly sorted.

• If n > 2, then the vector x is split into two subvectors y and z of half length. Then the function
mergesort is recursively called for y and z. Finally, y and z are merged into a sorted vector. Use
explicitly the fact, that y and z are already sorted at that moment.

Write a main program, which reads the vector x and its length n from the keyboard, sorts it with
mergesort and prints to the screen the sorted vector. Test your program accurately! Save your source
code as mergesort.c into the directory serie07.
Bonus: What is the computational cost of your function?

Aufgabe 7.5. Implement the mergesort algorithm from Exercise 7.4 without allocating additional vec-
tors in the recursion step. Instead, use pointer arithmetic: If x is the base-pointer of the array x (i.e.
the pointer to x0), then x+k is the base-pointer of xk. Hence for the recursion step, it is sufficient, to
simply have the base-pointer to x0, the starting index k and the ending index ` of a part of x as input
parameters. For the sorted final array you can uniquely allocate dynamic memory at the beginning. No
additional memory is needed. How did you test the correctness of your code? Save your source code as
mergesort2.c into the directory serie07.

Aufgabe 7.6. Write a function void quicksort(double* x, int n), which sorts a vector x ∈ Rn in
ascending order using the quicksort algorithm. Choose an arbitrary pivot element from x, e.g., x1. Then,
x is split into two parts, x(<) and x(≥), and the pivot element x1: x(<) contains all the elements < x1,
while x(≥) contains all the elements ≥ x1. Finally, x(<) and x(≥) are recursively sorted and the resulting
sorted vector are merged. The direct implementation of this algorithm, however, requires additional
storage. To circumvent this, proceed as follows: Starting with j = 2, search for an element xj ≥ x1, i.e.,
xj belongs to x(≥). Then, starting with k = n, search for an element xk < x1, i.e., xk belongs to x(<).
In that case, swap xj and xk. If j and k coincide, then x has already the form (x1, x

(<), x(≥)). With
one additional swap, the form (x(<), x1, x

(≥)) is obtained immediately. It remains to sort x(<) and x(≥)

recursively. Write a main program, that reads the vector x and the length n from the keyboard and calls
the function. Test your implementation appropriately. Save your source code as quicksort.c into the
directory serie07.
Bonus: What is the computational cost of your function?

Aufgabe 7.7. Write a structure Date for the storage of all dates from 01.01.1900 (January 1, 1900).
The structure consists of three int-members (day, month, and year). Write the functions

• Date* newDate(int d, int m, int y),

• Date* delDate(Date* date),

as well as the mutator functions

• void setDateDay(Date* date, int d),

• void setDateMonth(Date* date, int m),

• void setDateYear(Date* date, int y),

• int getDateDay(Date* date),

• int getDateMonth(Date* date),

• int getDateYear(Date* date).

Moreover, implement the function int isMeaningful(Date* date), which determines whether a given
date is admissible (the function returns the value 1 if the date is admissible, the value 0 otherwise).
For instance, the date 31.02.2013 is not admissible (don’t forget to consider leap years!). Finally, write
a main program to test your implementation in an appropriate way. Save the source code, split into a
header file datum.h and datum.c, into the directory serie07.

Aufgabe 7.8. Write a structure Person for the storage of sensitive personal information. The structure
consists of four members: firstname (char*), surname (char*), address (Address*), and birthday

(Date*). Implement also all necessary functions to work with the structure. Use the structure Date

from Exercise 7.7 as well as the structure Address from the lecture (Slide 183). Write the function
Person* whoIsOlder(Person* a, Person* b), which compares the age of two persons and returns the
younger. Test your implementation accurately! Save the source code, split into a header file person.h

and person.c, into the directory serie07.

