Dirk Praetorius, Sommersemester 2018
Gregor Gantner 29.05.2018

Ubungen zur Vorlesung
Einfithrung in das Programmieren fiir TM

Serie 9

Aufgabe 9.1. Write a class customer for a bank customer. The class contains the name of the customer
as string, the current balance as double and a pin code as int. Implement set and get methods for
the member variables as well as the following class methods

e void printBalance()
prints the current balance on the screen.

e bool checkPIN()
reads in a PIN code and checks whether it is correct or not.

e void drawMoney()
checks a given PIN code, reads in the amount the customer wants to draw, and prints the new
balance on the screen. The account must not be overdrawn. If necessary, print a warning on the
screen.

How did you test your implementation? Save your source code as customer.{hpp, cpp} into the directory
serie09.

Aufgabe 9.2. Write a class University. This class should contain the members numStudents, city, and
name as well as the methods graduate, and newStudent. If the method graduate is called, the number
of students gets decreased by one, whereas if newStudent is called, the number of students increases by
one. All data members should be declared as private. Therefore, you have to implement get and set
methods. How did you test your implementation? Save your source code as university.{hpp,cpp} into
the directory serie09.

Aufgabe 9.3. For the HR-department of the University it can be tedious to add and delete students
one by one in their data. Therefore, overload the methods graduate and newStudent from the class
University from Exercise [0.2] so that the number of graduating and beginning students can be a
parameter of the methods. Moreover, write constructors which initialize your object with meaningful data.
If the object is not initialized directly, then set numStudents = 0, city = noWhere, name = noName.
Write a plot-routine to print the data of your object on screen. How did you test your implementation?
Save your source code as University.{hpp,cpp} into the directory serie09.

Aufgabe 9.4. Extend the class Triangle from the lecture (slides 213ff) by two further methods:
e the method getPerimeter (), which computes and returns the perimeter of a triangle;
e the method isEquilateral (), which checks whether a triangle is equilateral.

Test your implementation in a suitable way!

Aufgabe 9.5. Write a class Stopwatch to measure a routines execution time. The stopwatch has the
following two methods. If the first method is called, then the time measurement starts. If the method
is called again, the time measurement stops. The second method is used to reset the time to zero. To
realize this situation, implement the methods pushButtonStartStop and pushButtonReset. Implement
another method print that prints out the time formatted in the style hh:mm:ss.xx, e.g., if the measured
time is two minutes, then the output should be 00:02:00.00. Use the following code snippet to test your
implementation



Stopwatch S;

double sum = 0.0;

S.pushButtonStartStop();

for(int j=0; j<100%1000%1000; ++j)
sum += 1./3j;

S.pushButtonStartStop();

S.print();

What is computed here? Save your source code as Stopwatch. {hpp,cpp} into the directory serie09.
Hint: Use the data-type clock_t and the function clock() from the library time.h. The elapsed ti-
me in seconds between two calls of clock() can be obtained via

clock_t t1, t2;
double secs;

t1l = clock();
/* ... do some work ... */
t2 = clock();

secs = (double) (t2-t1) / CLOCKS_PER_SEC;

It makes sense to use a variable isRunning of type bool. If the method pushButtonStartStop is called,
then this variable is either set to true or false.

Bonus: Adapt the code snippet from above in order to compute Z;\le 43 for N = 102 using two different
methods: Once naively using the power function pow(j,3) from the math library, once clever without
using the math library. Measure the execution time of the different strategies. What do you observe?

Aufgabe 9.6. Write a structure Matrix to save quadratic n X n double matrices. Distinguish between
fully-populated matrices (type ’F’), lower triangle matrices (type ’L’) and upper triangle matrices
(type ’U’). A lower triangular matrix L and an upper triangular matrix U have the following polulation
structure:

Ul Uz U3 ... Ulp i 0
U2 U3 ... U2p lor Lo
U= ugz ... Usp L= | f31 {32 {33
0 Unn Enl gnQ £n3 .o ‘enn

We thus have u;;, = 0, if j > k and £;;, = 0, if j < k. A fully populated matrix should by stored in
Fortran-style, i.e., columnwise in a dynamical vector with n - n entries. Triangular matrices should be
stored in a vector with Z?=1 j =n(n+1)/2 entries. Implement the following functionalities:

e Default constructor, which allocates a 0 x 0 matrix of the type ’F’

e Constructor, which gets the type and the dimension as an input parameter
e Destructor

e get and set-methods for the matrix entries, the type and the dimension

The get and set-methods for the matrix entries depend on the type of the matrix. How did you test
your implementation? Save your source code as matrix.{hpp,cpp} into the directory serie09.

Aufgabe 9.7. Extend the class Matrix from Exercise [9.6] by

e a method scanMatrix(char typ, int n) to read the type and the matrix A € R"*™ depending
on the type from the keyboard,

e a method printMatrix (), which prints the matrix to the screen,



e a method columnsumnorm(), which computes and returns the column sum norm

n—1
JAl = _max > lasil,
7=0

e a method rowsumnorm(), which computes and returns the row sum norm

n—1
Al = > lajkl.
1Al = _max_ > lajil
k=0

Note that for lower resp. upper triangular matrizes the methods can access only coefficients aji re-
sp. a; with 0 < k < j < n — 1. How did you test your implementation? Save your source code as
matrix2.{hpp,cpp} into the directory serie09.

Aufgabe 9.8. According to the lecture, the members of a class can only be accessed indirectly via set-
and get-methods. What is the output of the following C++ program? Why is this possible? Explain
why this is a bad programming style.

#include <iostream>
using std::cout;
using std::endl;

class Test{

private:
int N;

public:
void setN(int N_in) { N = N_in; };
int getNQ{ return N; };
int* getptrN(){ return &N; };

};
int main(){

Test A;

A.setN(5);

int* ptr = A.getptrNQ);
cout << A.getN() << endl;
*ptr = 10;

cout << ptr << endl;

cout << A.getN() << endl;

return 0;



