
Dirk Praetorius, Sommersemester 2018
Gregor Gantner 26.06.2018

Übungen zur Vorlesung
Einführung in das Programmieren für TM

Serie 13

Hint. We consider the class Matrix from the lecture (slide 357) together with its derived class SquareMatrix
(slide 366 resp. Exercise 12.3). From the SquareMatrix, we have later derived the classes LowerTriangularMatrix
(slide 373) and DiagonalMatrix (Exercise 12.6).

Aufgabe 13.1. Not every matrix A ∈ Rn×n has a normalized LU factorization A = LU , i.e.,
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

an1 an2 . . . ann

 =


1 0 . . . 0

`21 1
. . .

...
...

. . .
. . . 0

`n1 . . . `n,n−1 1




u11 u12 . . . u1n

0 u22
. . .

...
...

. . .
. . . un−1,n

0 . . . 0 unn

 .

If such a factorization exists, it holds that

uik = aik −
i−1∑
j=1

`ijujk for i = 1, . . . , n, k = i, . . . , n,

`ki =
1

uii

(
aki −

i−1∑
j=1

`kjuji

)
for i = 1, . . . , n, k = i + 1, . . . , n,

`ii = 1 for i = 1, . . . , n,

Use the formula for the matrix-matrix multiplication to derive these formulae. Implement for the class
SquareMatrix the method computeLU, which computes and returns the LU factorization of a square
matrix A ∈ Rn×n. The method returns a matrix R ∈ Rn×n of type SquareMatrix, whose upper and
lower triangular parts contain the entries of L and U

R =


u11 u12 . . . u1n

`21 u22
. . .

...
...

. . .
. . . un−1,n

`n1 . . . `n,n−1 unn

 .

The diagonal of L does not need to be stored. Why? Test your implementation appropriately!

Aufgabe 13.2. What is the computational cost of your implementation of the LU factorization from
Exercise 13.1? Use the O-notation to write the result and justify your answer.

Aufgabe 13.3. The determinant of a matrix A ∈ Rn×n can be computed exploiting the normalized LU
factorization from Exercise 13.1: Indeed, it holds that det(A) = det(L) det(U) = det(U) =

∏n
j=1 ujj .

Extend the class SquareMatrix by the method det, which computes and returns the determinant. The
matrix A should not be overwritten. Test your implementation in an appropriate way!

Aufgabe 13.4. Extend the class SquareMatrix by the method solve, which computes the solution of a
linear system of equations of the form Ax = b according to the following strategy: First, compute the LU
factorization A = LU . Then, then solve the system Ly = b and finally Ux = y. Test your implementation
accurately!



Aufgabe 13.5. A matrix S ∈ Rn×n is skewsymmetric if it holds that ST = −S. Derive from the
class SquareMatrix the class SkewSymmetricMatrix. Use a vector of length n(n − 1)/2 to store the
matrix entries. Why is this sufficient? Implement constructors, type casting and a suitable access to the
coefficients. For the diagonal entries, proceed as done for the class LowerTriangularMatrix from the
lecture: Store double zero and double const zero and use them for the coefficient access. Test your
implementation accurately!

Aufgabe 13.6. Write a template function pot(T x, int n), which computes for an arbitrary datatype
(which supports operator* and operator/) the function xn. Test your example with varying datatypes.
Save your source code as pot.cpp into the directory serie13..
Hint : Note that xn should also work for negative n. You may use that x/x corresponds to the neutral
element of operator* of the type T.

Aufgabe 13.7. Explain the differences between public-, private-, und protected-inheritance on the
basis of a suitable exapmle.

Aufgabe 13.8. What is the system of floating-point numbers? Which parts does a floating-point number
consist of? How can you determine its value? What is the meaning of Inf, -Inf, and NaN? What is a
normalized floating-point number? What is an implicit leading bit? Which are the values of the largest
and the smallest positive normalized floating point number in the float-system F(2, 24,−126, 127)?


