Vienna University of Technology Institute for Analysis and Scientific Computing Dr. G. Di Gesù, Prof. A. Arnold

Exercise Sheet 2 "Nonlinear Partial Differential Equations" (nonlinear elliptic PDE, comparison principle, Sobolev-functions)

Exercise 1. Consider the boundary-value-problem (BVP)

$$L(u) = f \text{ in } I, \quad u(\alpha) = c, \quad u(\beta) = d, \qquad (1)$$

for some function $f \in C^1(I)$, an interval $I = (\alpha, \beta) \subset \mathbb{R}$, constants $c, d \in \mathbb{R}$, and a quasi-linear elliptic (w.r.t u) differential operator $L(u) = a(x, u_x)u_{xx} + b(x, u, u_x)$. If the functions a, b are sufficiently smooth and the function b is monotone decreasing with respect to u then classical solutions of (1) are unique, see also Corollary 2.1 in the lecture notes. Find an example of a BVP (1) with some function b, which is not monotone decreasing in u, such that BVP (1) does not have a unique classical solution.

Exercise 2. Consider a positive constant R > 0 and a bounded domain $\Omega \subset \mathbb{R}^n$ with smooth boundary. Show that a *positive* classical solution of the BVP

$$-\Delta u = R^2 - u^2$$
 in Ω , $u = R$ on $\partial \Omega$.

is unique.

Exercise 3. Suppose $\Omega \subset \mathbb{R}^n$ is a bounded domain with smooth boundary and $u \in H^1(\Omega)$. Show that $u^+ \in H^1(\Omega)$ and

$$\nabla(u^+) = \begin{cases} \nabla u & \text{f.ü. auf } \{u > 0\}, \\ 0 & \text{f.ü. auf } \{u \le 0\}. \end{cases}$$

Hint: Show that $u^+ = \lim_{\epsilon \to 0} F_{\epsilon}(u)$, for

$$F_{\epsilon}(z) = \begin{cases} (z^2 + \epsilon^2)^{1/2} - \epsilon & \text{ for } z \ge 0, \\ 0 & \text{ for } z < 0. \end{cases}$$

Lemma 1. Suppose $\Omega \in \mathbb{R}^n$ is a bounded domain with smooth boundary, $F \in C^1(\mathbb{R})$ with $F' \in L^{\infty}(\mathbb{R})$ and $u \in W^{1,p}(\mathbb{R})$ for $1 \leq p \leq \infty$. Then $F \circ u \in W^{1,p}(\Omega)$ and $\nabla(F \circ u) = (F' \circ u) \nabla u$.

Exercise 4. Let X, Y, Z be Banach spaces with continuous embeddings $X \hookrightarrow Y \hookrightarrow Z$. Assume there exist C > 0 and $0 < \theta < 1$, s.t. for all $u \in X$:

$$||u||_Y \le C ||u||_X^{1-\theta} ||u||_Z^{\theta}.$$

Show that

- (i) if $(u_k) \subset X$ is bounded with $\lim_{k\to\infty} u_k = u$ in Z then $\lim_{k\to\infty} u_k = u$ in Y.
- (ii) If $X \hookrightarrow Z$ is compact, then also $X \hookrightarrow Y$ is compact.

Solutions will be discussed on Friday 16th of March 2017.