Exercise Sheet 2 "Nonlinear Partial Differential Equations" (nonlinear elliptic PDE, comparison principle, Sobolev-functions)

Exercise 1. Consider the boundary-value-problem (BVP)

$$
\begin{equation*}
L(u)=f \text { in } I, \quad u(\alpha)=c, \quad u(\beta)=d, \tag{1}
\end{equation*}
$$

for some function $f \in C^{1}(I)$, an interval $I=(\alpha, \beta) \subset \mathbb{R}$, constants $c, d \in \mathbb{R}$, and a quasi-linear elliptic (w.r.t u) differential operator $L(u)=a\left(x, u_{x}\right) u_{x x}+b\left(x, u, u_{x}\right)$. If the functions a, b are sufficiently smooth and the function b is monotone decreasing with respect to u then classical solutions of (1) are unique, see also Corollary 2.1 in the lecture notes. Find an example of a BVP (1) with some function b, which is not monotone decreasing in u, such that BVP (1) does not have a unique classical solution.

Exercise 2. Consider a positive constant $R>0$ and a bounded domain $\Omega \subset \mathbb{R}^{n}$ with smooth boundary. Show that a positive classical solution of the BVP

$$
-\Delta u=R^{2}-u^{2} \text { in } \Omega, \quad u=R \text { on } \partial \Omega,
$$

is unique.
Exercise 3. Suppose $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary and $u \in$ $H^{1}(\Omega)$. Show that $u^{+} \in H^{1}(\Omega)$ and

$$
\nabla\left(u^{+}\right)= \begin{cases}\nabla u & \text { f.ü. auf }\{u>0\} \\ 0 & \text { f.ü. auf }\{u \leq 0\}\end{cases}
$$

Hint: Show that $u^{+}=\lim _{\epsilon \rightarrow 0} F_{\epsilon}(u)$, for

$$
F_{\epsilon}(z)= \begin{cases}\left(z^{2}+\epsilon^{2}\right)^{1 / 2}-\epsilon & \text { for } z \geq 0 \\ 0 & \text { for } z<0\end{cases}
$$

Lemma 1. Suppose $\Omega \in \mathbb{R}^{n}$ is a bounded domain with smooth boundary, $F \in C^{1}(\mathbb{R})$ with $F^{\prime} \in L^{\infty}(\mathbb{R})$ and $u \in W^{1, p}(\mathbb{R})$ for $1 \leq p \leq \infty$. Then $F \circ u \in W^{1, p}(\Omega)$ and $\nabla(F \circ u)=\left(F^{\prime} \circ u\right) \nabla u$.

Exercise 4. Let X, Y, Z be Banach spaces with continuous embeddings $X \hookrightarrow Y \hookrightarrow Z$. Assume there exist $C>0$ and $0<\theta<1$, s.t. for all $u \in X$:

$$
\|u\|_{Y} \leq C\|u\|_{X}^{1-\theta}\|u\|_{Z}^{\theta} .
$$

Show that
(i) if $\left(u_{k}\right) \subset X$ is bounded with $\lim _{k \rightarrow \infty} u_{k}=u$ in Z then $\lim _{k \rightarrow \infty} u_{k}=u$ in Y.
(ii) If $X \hookrightarrow Z$ is compact, then also $X \hookrightarrow Y$ is compact.

Solutions will be discussed on Friday 16th of March 2017.

