Exercise Sheet 3 "Nonlinear Partial Differential Equations"

(nonlinear elliptic PDEs, fixed point methods, weak convergence)

Exercise 1. Suppose $\Omega \in \mathbb{R}^{n}$ is a bounded domain with smooth boundary, $c \geq 0$ and A is a positive definite matrix with $A \geq \alpha$ Id for some $\alpha>0$. Consider

$$
\begin{cases}L(u):=-\operatorname{div}(A \nabla u)+c u=f(x, u) & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Moreover, suppose the function f is monotone decreasing in u, Carathéodory and satisfies

$$
|f(x, u)| \leq C|u|^{p-1}+h(x) \quad \text { for almost every } x \in \Omega, \quad \forall u \in \mathbb{R},
$$

where $C \geq 0, p \in N^{*}$ and $h \in L^{q}(\Omega)$ with $\frac{1}{p}+\frac{1}{q}=1$.
(i) Under which condition on the parameter C can you prove the existence of a weak solution of (1) by following the proof of Theorem 2.6 in the lecture notes?
(ii) Study the existence of a weak solution of (1) by using Schaefer's (Leray-Schauder) fixed point theorem for $X=L^{p}(\Omega)$.

Exercise 2. Suppose $\Omega \in \mathbb{R}^{n}$ is a bounded domain with smooth boundary, $c \geq 0$ and A is a positive definite matrix with $A \geq \alpha$ Id for some $\alpha>0$. Consider

$$
\begin{cases}L(u):=-\operatorname{div}(A \nabla u)+c u=f(u)+h(x) & \text { in } \Omega \tag{2}\\ u=g & \text { on } \partial \Omega\end{cases}
$$

with $g \in H^{1}(\Omega), h \in L^{2}(\Omega)$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Lipschitz-continuous function. Prove the existence of a unique solution $u \in H^{1}(\Omega)$ of (2) with $u-g \in H_{0}^{1}(\Omega)$ in case of a sufficiently small Lipschitz-constant $\operatorname{Lip}(f)$.

Exercise 3. Suppose $\Omega \in \mathbb{R}^{n}$ is a bounded domain with smooth boundary and $c \in$ $L^{\infty}(\Omega)$. Consider the Dirichlet-problem

$$
\begin{cases}\Delta u=e^{u}-c(x) & \text { in } \Omega \tag{3}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

(i) Find a lower solution $\underline{u}(x)$, and a constant upper solution \bar{u} of (3).

Hint: To construct a lower solution use the Green's function for the Laplaceoperator on Ω.
(ii) Prove the existence of a solution $u \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ of (3).

Hint: Replace the nonlinear function e^{u} with

$$
h(z)= \begin{cases}e^{\bar{u}} & \text { if } z \geq \bar{u} \\ e^{z} & \text { if } z<\bar{u}\end{cases}
$$

and use Schaefer's fixed point theorem. Use a comparison principle to prove that some solutions of the modified problem are also solutions of the original problem.
(iii) Prove the uniqueness of weak solutions.

Exercise 4. Suppose $a: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, such that $a\left(f_{n}\right) \rightharpoonup a(f)$ converges weakly in $L^{2}(0,1)$ for all weakly convergent sequences $f_{n} \rightharpoonup f$ in $L^{2}(0,1)$. Prove that a is an affine function, i.e. the function a has for suitable constants α and β the representation $a: z \mapsto a(z)=\alpha z+\beta$ for all $z \in \mathbb{R}$.

Hint: Suppose $a(s u+(1-s) v) \neq s a(u)+(1-s) a(v)$ for $s, u, v,(s u+(1-s) v) \in(0,1)$. Find a contradiction using the sequence

$$
f_{n}(z)= \begin{cases}u & \text { if } z \in[j / n,(j+s) / n] \text { mit } j=0, \ldots, n-1, \\ v & \text { otherwise },\end{cases}
$$

and simple testfunctions.

Solutions will be discussed on Monday 27th of March 2017.

