Exercise Sheet 6 "Nonlinear Partial Differential Equations"

(parabolic PDEs, reaction-diffusion equations)

Exercise 1. Let $\Omega \subset \mathbb{R}^{n}$ be bounded, let $T>0$, and let $X:=C\left([0, T] ; L^{2}(\Omega)\right)$. Consider the map $A: X \rightarrow X, v \mapsto u$, which assigns to $v \in X$ the unique weak solution u of

$$
\begin{cases}u_{t}-\Delta u=f(v) & \text { in } \Omega \times(0, T] \tag{1}\\ u=0 & \text { for }(x, t) \in \partial \Omega \times[0, T] \\ u(t=0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is LiPSChITZ-continuous and $u_{0} \in L^{2}(\Omega)$. Show that A^{k} is contractive for sufficiently large $k=k(T)$.

Exercise 2. Let u be the weak solution of the Cauchy-Problem

$$
\begin{cases}u_{t}-\Delta u=f(u) & \text { in } \Omega \times(0, \infty) \tag{2}\\ u=0 & \text { for }(x, t) \in \partial \Omega \times[0, \infty) \\ u(t=0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is LiPSChitz-continuous and $u_{0} \in L^{2}(\Omega)$. Give an estimate for the norm $\|u(t, \cdot)\|_{L^{2}(\Omega)}$, valid for every $t \geq 0$.

Exercise 3. Provide examples for functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and initial values $u_{0} \in L^{2}(\Omega)$, such that the Cauchy-Problem

$$
\begin{cases}u_{t}-\Delta u=f(u) & \text { in } \Omega \times(0, \infty), \tag{3}\\ u=0 & \text { for }(x, t) \in \partial \Omega \times[0, \infty) \\ u(t=0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

admits local but not global solutions and prove your claims.

Exercise 4. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary $\partial \Omega$ and let $T>0$. Consider the differential operator

$$
\begin{equation*}
L u=-\operatorname{div}(A(x, t) \nabla u)+b(x, t) \cdot \nabla u+c(x, t) u \tag{4}
\end{equation*}
$$

with strictly positive definite matrix $A=\left(a^{i j}\right)_{i, j=1, \ldots, n}$, a vector $b=\left(b^{i}\right)_{i=1, \ldots, n}$, and bounded continuous coefficients $a^{i j}, b^{i}, c \in C_{b}(\Omega \times[0, T])$ for $i, j=1, \ldots, n$.

Consider the initial-value-problem (IVP)

$$
\begin{cases}u_{t}+L u=f & \text { in } \Omega \times(0, T] \tag{5}\\ u(x, 0)=u_{0}(x) & \text { for } x \in \Omega\end{cases}
$$

with the differential operator L in (4), $u_{0} \in L^{2}(\Omega), f \in L^{2}(\Omega \times(0, T])$. Prove the existence of a unique weak solution u of the IVP (5) with Dirichlet-boundary condition

$$
u(x, t)=0 \text { for }(x, t) \in \partial \Omega \times[0, T] .
$$

Solutions will be discussed on Monday 8th of May 2017.

