## Exercise Sheet 7 "Nonlinear Partial Differential Equations" (parabolic PDEs)

Exercise 1. Let $\Omega \subset \mathbb{R}$ be a bounded domain with smooth boundary. Show that, for $u_{0} \in L^{2}(\Omega)$, the initial/boundary-value problem

$$
\begin{cases}u_{t}-u_{x x}=\arctan (u) u_{x} & \text { in } \Omega \times(0, \infty) \\ u=0 & \text { on } \partial \Omega \times[0, \infty) \\ u(\cdot, t=0)=u_{0} & \text { in } \Omega\end{cases}
$$

has a unique global solution $u \in C\left([0, \infty), L^{2}(\Omega)\right)$.
Hint: Use Theorems 3.7 and 3.6 from the lecture. Look for a function $g$ with $g^{\prime}(x)=$ $\arctan (x)$.

Exercise 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary and $T>0$. Consider the Cauchy problem

$$
\begin{cases}u_{t}-\Delta u=-u|u| & \text { in } \Omega \times(0, T]  \tag{1}\\ u=0 & \text { for }(x, t) \in \partial \Omega \times[0, T] \\ u(t=0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

with $u_{0} \in L^{2}(\Omega)$. Prove, for $n=2$ and $n=3$, that a unique weak solution $u \in$ $C\left([0, T], L^{2}(\Omega)\right)$ exists.

Attention: If $n>1$ then $u|u| \in H^{-1}(\Omega)$ does not hold for all $u \in L^{2}(\Omega)$ !
Hint: Use a fixed-point iteration $A(u)=w$ with $-|u(t)| w(t)$ as a right-hand-side and a suitable function subspace, and use the Gagliardo-Nirenberg-inequality in your estimates: For $1 \leq p, r, q \leq \infty$ it holds

$$
\|u\|_{L^{p}(\Omega)} \leq C\|\nabla u\|_{L^{r}(\Omega)}^{\alpha}\|u\|_{L^{q}(\Omega)}^{1-\alpha}, \quad \frac{1}{p}=\alpha\left(\frac{1}{r}-\frac{1}{n}\right)+(1-\alpha) \frac{1}{q}, \quad \alpha \in[0,1] .
$$

Finally you can use the techniques of the proof of Theorem 3.8.

Exercise 3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Consider the Cauchy problem

$$
\begin{cases}u_{t}-\Delta u=f(u) & \text { in } \Omega \times(0, T]  \tag{2}\\ \frac{\partial u}{\partial \nu}=0 & \text { for }(x, t) \in \partial \Omega \times[0, T] \\ u(t=0, \cdot)=u_{0} & \text { in } \Omega\end{cases}
$$

where $u_{0} \in L^{\infty}(\Omega)$, and $f$ is a continuous, monotone decreasing function and there exists $M_{0}>0$ such that $f\left(M_{0}\right) \leq 0$ and $f\left(-M_{0}\right) \geq 0$. Suppose $V=H^{1}(\Omega), H=L^{2}(\Omega)$ and $u \in L^{2}(0, T ; V) \cap H^{1}\left(0, T ; V^{\prime}\right)$ is a weak solution of (2). Show that:

$$
\|u(t, \cdot)\|_{L^{\infty}(\Omega)} \leq \max \left\{M_{0},\left\|u_{0}\right\|_{L^{\infty}(\Omega)}\right\}, \quad t>0 .
$$

Hint: Use $v_{1}:=(u-M)^{+}$and $v_{2}:=(u+M)^{-}$for suitable $M$ as test functions in the weak formulation.

Exercise 4. Let $\Omega \subset \mathbb{R}^{n}(n \leq 3)$ be a bounded domain with smooth boundary, $\epsilon>0$ and let $u$ be a classical solution of the Allen-Cahn-Equation

$$
\begin{cases}u_{t}-\epsilon \Delta u=-\frac{1}{\epsilon}\left(u^{2}-1\right) u & \text { in } \Omega, t>0,  \tag{3}\\ \nabla u \cdot \nu=0 & \text { auf } \partial \Omega, t>0 \\ u(0)=u_{0} . & \end{cases}
$$

Define for $v \in H^{1}(\Omega)$ the functional

$$
E[v]:=\frac{\epsilon}{2} \int_{\Omega}|\nabla v|^{2} d x+\frac{1}{4 \epsilon} \int_{\Omega}\left(v^{2}-1\right)^{2} d x .
$$

Show that
(i) The derivative of $t \mapsto E(u(t))$ is nonnegative for every $t>0$.
(ii) $E: H^{1}(\Omega) \rightarrow \mathbb{R}$ is weakly lower semicontinuous, i.e. $u_{k} \rightharpoonup u$ weakly in $H^{1}(\Omega)$ implies $E(u) \leq \liminf _{k \rightarrow \infty} E\left(u_{k}\right)$.

Solutions will be discussed on Monday 15th of May 2017.

