Exercise Sheet 10 "Nonlinear Partial Differential Equations"

(Nonlinear functionals, wave equation)
Consider a functional $\mathcal{F}: U \rightarrow \mathbb{R}$ where $U \subset X$ and X is a linear space over \mathbb{R}. If $u_{0} \in U, \xi \in X$ and $\epsilon_{0}>0$ are such that $\left\{u_{0}+\epsilon \xi| | \epsilon \mid<\epsilon_{0}\right\} \subset U$, then the function

$$
\phi:\left(-\epsilon_{0}, \epsilon_{0}\right) \rightarrow \mathbb{R}, \quad \epsilon \mapsto \phi(\epsilon):=\mathcal{F}\left(u_{0}+\epsilon \xi\right),
$$

is welldefined.
Definition 1. If $\phi^{\prime}(0)$ exists, then $\delta \mathcal{F}\left(u_{0}, \xi\right):=\phi^{\prime}(0)$ is called the first variation of \mathcal{F} at u_{0} in direction of ξ.

Remark 2. The "variation" is a "weak" derivative concept, which does not need a topology on X.

Definition 3. Let X be a Banach-space and X^{\prime} its topological dual space. Let \mathcal{F} : $U \rightarrow \mathbb{R}$ be a functional for some open set $U \subset X$ and $u_{0} \in U$.
(i) The functional \mathcal{F} is called GÂTEAUX differentiable at u_{0} if there exists $l \in X^{\prime}$ (depending on u_{0}) such that

$$
\lim _{\epsilon \rightarrow 0}\left|\frac{\mathcal{F}\left(u_{0}+\epsilon \xi\right)-\mathcal{F}\left(u_{0}\right)-\epsilon l(\xi)}{\epsilon}\right|=0 \quad \text { for all } \xi \in X .
$$

In this case $\mathrm{d} \mathcal{F}\left(u_{0}, \cdot\right)=l$ is called the GÂTEAUX derivative of \mathcal{F} at u_{0}.
(ii) The functional \mathcal{F} is called Fréchet differentiable at u_{0} if there exists $l \in X^{\prime}$ (depending on u_{0}) such that

$$
\lim _{\xi \rightarrow 0} \frac{\left|\mathcal{F}\left(u_{0}+\xi\right)-\mathcal{F}\left(u_{0}\right)-l(\xi)\right|}{\|\xi\|}=0 \quad \text { for all } \xi \in X
$$

In this case $\operatorname{D\mathcal {F}}\left(u_{0}, \cdot\right)=l$ is called the Fréchet derivative of \mathcal{F} at u_{0}.

Exercise 1. Let X be a BANACH-space and X^{\prime} be its topological dual space. Consider the functional $\mathcal{F}: U \rightarrow \mathbb{R}$ on some open subset $U \subset X$ and $u_{0} \in U$. Show that
(i) \mathcal{F} Fréchet differentiable at $u_{0} \Rightarrow \mathcal{F}$ GÂteaux differentiable at $u_{0} \Rightarrow$ First variation of \mathcal{F} exists in all directions ξ.
(ii) \mathcal{F} Fréchet differentiable at $u_{0} \Rightarrow$

$$
\mathrm{D} \mathcal{F}\left(u_{0}, \xi\right)=\mathrm{d} \mathcal{F}\left(u_{0}, \xi\right)=\delta \mathcal{F}\left(u_{0}, \xi\right) \quad \text { for all } \xi \in X
$$

(iii) How are GÂteaux derivative resp. Fréchet derivative called in a finite-dimensional Banach-space X ?

Exercise 2. Let $X:=H^{2}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}\right)$. Consider the functionals
(i) $\mathcal{E}_{1}: X \rightarrow \mathbb{R}, u \mapsto \mathcal{E}_{1}(u):=\int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}}-\frac{1}{2} u_{t}^{2}+\frac{1}{2}|\nabla u|^{2}+F(u) d(x, t)$, where $F \in C^{1}(\mathbb{R} ; \mathbb{R})$ and $F: X \rightarrow L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}\right)$.
(ii) $\mathcal{E}_{2}: X \rightarrow \mathbb{R}, u \mapsto \mathcal{E}_{2}(u):=\int_{\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}} \frac{1}{2} \operatorname{Im}\left(u_{t} \bar{u}\right)+\frac{1}{2}|\nabla u|^{2}+F(u) d(x, t)$, where $F \in$ $C^{1}(\mathbb{C} ; \mathbb{R}), F: X \rightarrow L^{1}\left(\mathbb{R}_{x}^{n} \times \mathbb{R}_{t}\right)$, and \bar{u} is the complex-conjugate of u.

Compute the first variation and the GÂTEAUX derivative of \mathcal{E}_{1} and \mathcal{E}_{2}.

Exercise 3. Consider the evolution group $T_{0}(s):=\mathrm{e}^{\mathrm{i} s \Delta}, s \in \mathbb{R}$, for the free Schrödinger equation on $L^{2}\left(\mathbb{R}^{n}\right)$ with

$$
T_{0}(s) u_{0}:= \begin{cases}u_{0} & \text { for } s=0, \\ u(x, t)=\int_{\mathbb{R}^{n}} u_{0}(\xi) \frac{1}{(4 \pi i t)^{n / 2}} \mathrm{e}^{\frac{\mathrm{i}|x-\xi|^{2}}{4 t}} \mathrm{~d} \xi & \text { for } s \neq 0, x \in \mathbb{R}^{n}\end{cases}
$$

Show that all operators $T_{0}(s), s \in \mathbb{R}$, are unitary.

Exercise 4. Show that $x u+3 t u^{2}$ is a conserved quantity for the KdV equation

$$
u_{t}=6 u u_{x}-u_{x x x} .
$$

Solutions will be discussed on Wednesday 12th of June 2017.

