Exercise Sheet 3 "Nonlinear Partial Differential Equations"

(nonlinear elliptic PDEs, fixed point methods, weak convergence)

**Exercise 1.** Suppose  $\Omega \in \mathbb{R}^n$  is a bounded domain with smooth boundary, c is a non negative function in  $\Omega$  and A is a positive definite matrix with  $A \ge \alpha$  Id for some  $\alpha > 0$ . Let us consider the following non linear PDE,

$$\begin{cases} L(u) := -\operatorname{div}(A\nabla u) + cu = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega. \end{cases}$$
(1)

Moreover, suppose the function f is Carathéodory and satisfies

$$|f(x,u)| \le C_f |u|^{p-1} + h(x)$$
 for almost every  $x \in \Omega$ ,  $\forall u \in \mathbb{R}$ ,

where  $C_f \ge 0$ ,  $p \in \mathbb{N}^*$  and  $h \in L^q(\Omega)$  with  $\frac{1}{p} + \frac{1}{q} = 1$ .

- (i) Recall the definition of a weak solution of (1). Check that all the terms appearing in the weak formulation are well defined.
- (ii) Under which condition on the parameter  $C_f$  can you prove the existence of a weak solution of (1) by following the proof of Theorem 2.12 in the lecture notes?
- (iii) Let us now assume in addition that f is monotone decreasing in u. Show the existence of a weak solution of (1) by using Schaefer's (Leray-Schauder) fixed point theorem for  $X = L^p(\Omega)$ .

Do we still need a condition on  $C_f$ ?

(iv) Let us still assume that f is monotone decreasing in u. Study the uniqueness of a weak solution of (1).

**Exercise 2.** Suppose  $\Omega \in \mathbb{R}^n$  is a bounded domain with smooth boundary,  $c \ge 0$  is a constant and A is a positive definite matrix with  $A \ge \alpha$  Id for some  $\alpha > 0$ . Consider

$$\begin{cases} L(u) := -\operatorname{div}(A\nabla u) + cu = f(u) + h(x) & \text{in } \Omega, \\ u = g & \text{on } \partial\Omega, \end{cases}$$
(2)

with  $g \in H^1(\Omega)$ ,  $h \in L^2(\Omega)$  and  $f : \mathbb{R} \to \mathbb{R}$  is a Lipschitz-continuous function. Prove the existence of a unique solution  $u \in H^1(\Omega)$  of (2) with  $u - g \in H^1_0(\Omega)$  in case of a sufficiently small Lipschitz-constant Lip(f). **Exercise 3.** Suppose  $\Omega \in \mathbb{R}^n$  is a bounded domain with smooth boundary and  $c \in L^{\infty}(\Omega)$ . Consider the Dirichlet-problem

$$\begin{cases} \Delta u = e^u - c(x) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial\Omega. \end{cases}$$
(3)

(i) Find constant upper solution u
 *ū* of (3). With this upper solution, construct a lower solution u(x). Then, recall the comparison principle for weak solutions. Hint: Construct u(x) as a solution of:

$$\Delta \underline{u} = f \text{ in } \Omega \text{ with } \underline{u} = 0 \text{ on } \partial \Omega,$$

for a well chosen f.

(ii) Prove the existence of a weak solution  $w \in H^2(\Omega) \cap H^1_0(\Omega)$  of

$$\begin{cases} \Delta u = h(u) - c(x) & \text{ in } \Omega, \\ u = 0 & \text{ on } \partial \Omega. \end{cases}$$

where

$$h(z) := \begin{cases} e^{\overline{u}} & \text{if } z \ge \overline{u} \,, \\ e^z & \text{if } z < \overline{u} \,, \end{cases}$$

Hint: Item (iii) in the first exercise.

Show that some solutions of this modified problem are also solutions of the original problem.

(iii) Prove the uniqueness of weak solutions.

**Exercise 4.** Suppose  $a : \mathbb{R} \to \mathbb{R}$  is a continuous function, such that  $a(f_n) \rightharpoonup a(f)$  converges weakly in  $L^2(0, 1)$  for all weakly convergent sequences  $f_n \rightharpoonup f$  in  $L^2(0, 1)$ . Prove that a is an affine function, i.e. the function a has for suitable constants  $\alpha$  and  $\beta$  the representation  $a : z \mapsto a(z) = \alpha z + \beta$  for all  $z \in \mathbb{R}$ .

Hint: Suppose  $a(su + (1 - s)v) \neq sa(u) + (1 - s)a(v)$  for  $s, u, v, (su + (1 - s)v) \in (0, 1)$ . Find a contradiction using the sequence

$$f_n(z) = \begin{cases} u & \text{if } z \in [j/n, (j+s)/n] \text{ mit } j = 0, \dots, n-1, \\ v & \text{otherwise,} \end{cases}$$

and simple testfunctions.

Solutions will be discussed on Monday 28th of March 2019.