Exercise Sheet 4 "Nonlinear Partial Differential Equations" (nonlinear elliptic PDE, weak convergence, monotone operators)

Theorem 1. Let $n \in \mathbb{N}$ and $\Omega \subset \mathbb{R}^n$ be a bounded domain with boundary $\partial \Omega \in C^1$.

- (i) There exists a bounded linear operator, the so called trace-operator, $T: H^1(\Omega) \to L^2(\partial\Omega)$ with the property $T(u) = u|_{\partial\Omega}$ for all $u \in H^1(\Omega) \cap C^0(\overline{\Omega})$.
- (ii) If $u \in H^1(\Omega)$, then $u \in H^1_0(\Omega)$ if and only if T(u) = 0 in $L^2(\Omega)$.

Exercise 1. Let $\Omega \in \mathbb{R}^n$ be a bounded domain with smooth boundary. Consider the boundary value problem (BVP) for a nonlinear POISSON-equation

$$\begin{cases} -\Delta u = f(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(1)

where $f \in C^1(\mathbb{R})$ with $|f'| \leq C$. Prove the following statement:

If there exist a weak upper solution \overline{u} and a weak lower solution \underline{u} of BVP (1) such that

 $T(\underline{u}) \leq 0$ on $\partial \Omega$, $T(\overline{u}) \geq 0$ on $\partial \Omega$, $\underline{u} \leq \overline{u}$ almost everywhere in Ω ,

then there exists a weak solution u of BVP (1) such that

 $\underline{u} \leq u \leq \overline{u}$ almost everywhere in Ω .

Hint:

(i) Prove, for a suitable $\lambda > 0$, the existence of a sequence of weak solutions $(u_k)_{k \in \mathbb{N}}$ for the linear BVPs

$$\begin{cases} -\Delta u_{k+1} + \lambda u_{k+1} = f(u_k) + \lambda u_k & \text{in } \Omega, \\ u_{k+1} = 0 & \text{on } \partial \Omega, \end{cases}$$

which satisfy the estimates

$$\underline{u} = u_0 \leq u_1 \leq \cdots \leq u_k \leq \cdots \leq \overline{u}$$
 a.e. in Ω .

(ii) Prove the existence of the limit $u := \lim_{k\to\infty} u_k$ in $L^2(\Omega)$ and of a subsequence $(u_{k_j})_{j\in\mathbb{N}}$ such that $u_{k_j} \rightharpoonup u$ in $H^1_0(\Omega)$. Use these results in the weak formulation of BVP (1), to recover u as a weak solution of BVP (1).

Exercise 2. Suppose $f \in C^0(\mathbb{R})$ is a (not necessarily strongly) monotone function such that $f(w) \in L^2(\Omega)$ for all $w \in L^2(\Omega)$, and $(u_k)_{k \in \mathbb{N}} \subset L^2(\Omega)$ is a sequence with $u_k \to u$ in $L^2(\Omega)$ for $k \to \infty$. Use the method of BROWDER and MINTY, to prove

$$f(u_k) \rightarrow v$$
 in $L^2(\Omega)$ for $k \rightarrow \infty \Rightarrow v = f(u)$.

Exercise 3. Suppose $\Omega \in \mathbb{R}^n$ is a bounded domain with smooth boundary. Consider the *minimal surface equation*

$$\begin{cases} \operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^2}}\right) = f & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(2)

Show that there exists at most one weak solution of (2).

Hint: First show for all $p, q \in \mathbb{R}^n$ that

$$\left(\frac{p}{\sqrt{1+|p|^2}} - \frac{q}{\sqrt{1+|q|^2}}\right) \cdot (p-q) \ge \frac{\sqrt{1+|p|^2} + \sqrt{1+|q|^2}}{2} \left|\frac{p}{\sqrt{1+|p|^2}} - \frac{q}{\sqrt{1+|q|^2}}\right|^2.$$

Then show u = v in Ω for all weak solutions $u, v \in H_0^1(\Omega)$ of (2).

Theorem 2. Suppose B is a reflexive BANACH space. If all weakly convergent subsequences of a bounded sequence $\{u_k | k \in \mathbb{N}\} \subset B$ converge weakly to the same limit $u \in B$, then the whole sequence $(u_k)_{k \in \mathbb{N}}$ converges weakly to u.

Exercise 4. Suppose V is a reflexive BANACH space and $A: V \to V'$. Show that

- (i) If A is hemi-continuous and monotone, then A is of type M.
- (ii) If A is of type M and bounded, then A is demi-continuous.
- (iii) If A is (strongly) continuous, then A is demi-continuous. If A is demi-continuous, then A is hemi-continuous.
- (iv) If A is strongly continuous, then A is compact.

Solutions will be discussed on Thursday 4th of April 2019.