Exercise Sheet 4 "Nonlinear Partial Differential Equations"

(nonlinear elliptic PDE, weak convergence, monotone operators)

Theorem 1. Let $n \in \mathbb{N}$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with boundary $\partial \Omega \in C^{1}$.
(i) There exists a bounded linear operator, the so called trace-operator, $T: H^{1}(\Omega) \rightarrow$ $L^{2}(\partial \Omega)$ with the property $T(u)=\left.u\right|_{\partial \Omega}$ for all $u \in H^{1}(\Omega) \cap C^{0}(\bar{\Omega})$.
(ii) If $u \in H^{1}(\Omega)$, then $u \in H_{0}^{1}(\Omega)$ if and only if $T(u)=0$ in $L^{2}(\Omega)$.

Exercise 1. Let $\Omega \in \mathbb{R}^{n}$ be a bounded domain with smooth boundary. Consider the boundary value problem (BVP) for a nonlinear Poisson-equation

$$
\begin{cases}-\Delta u=f(u) & \text { in } \Omega \tag{1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $f \in C^{1}(\mathbb{R})$ with $\left|f^{\prime}\right| \leq C$. Prove the following statement:
If there exist a weak upper solution \bar{u} and a weak lower solution \underline{u} of BVP (1) such that

$$
T(\underline{u}) \leq 0 \text { on } \partial \Omega, \quad T(\bar{u}) \geq 0 \text { on } \partial \Omega, \quad \underline{u} \leq \bar{u} \text { almost everywhere in } \Omega,
$$

then there exists a weak solution u of BVP (1) such that

$$
\underline{u} \leq u \leq \bar{u} \quad \text { almost everywhere in } \Omega .
$$

Hint:

(i) Prove, for a suitable $\lambda>0$, the existence of a sequence of weak solutions $\left(u_{k}\right)_{k \in \mathbb{N}}$ for the linear BVPs

$$
\begin{cases}-\Delta u_{k+1}+\lambda u_{k+1}=f\left(u_{k}\right)+\lambda u_{k} & \text { in } \Omega \\ u_{k+1}=0 & \text { on } \partial \Omega\end{cases}
$$

which satisfy the estimates

$$
\underline{u}=u_{0} \leq u_{1} \leq \cdots \leq u_{k} \leq \cdots \leq \bar{u} \quad \text { a.e. in } \Omega .
$$

(ii) Prove the existence of the limit $u:=\lim _{k \rightarrow \infty} u_{k}$ in $L^{2}(\Omega)$ and of a subsequence $\left(u_{k_{j}}\right)_{j \in \mathbb{N}}$ such that $u_{k_{j}} \rightharpoonup u$ in $H_{0}^{1}(\Omega)$. Use these results in the weak formulation of BVP (1), to recover u as a weak solution of BVP (1).

Exercise 2. Suppose $f \in C^{0}(\mathbb{R})$ is a (not necessarily strongly) monotone function such that $f(w) \in L^{2}(\Omega)$ for all $w \in L^{2}(\Omega)$, and $\left(u_{k}\right)_{k \in \mathbb{N}} \subset L^{2}(\Omega)$ is a sequence with $u_{k} \rightarrow u$ in $L^{2}(\Omega)$ for $k \rightarrow \infty$. Use the method of Browder and Minty, to prove

$$
f\left(u_{k}\right) \rightharpoonup v \text { in } L^{2}(\Omega) \text { for } k \rightarrow \infty \Rightarrow v=f(u) .
$$

Exercise 3. Suppose $\Omega \in \mathbb{R}^{n}$ is a bounded domain with smooth boundary. Consider the minimal surface equation

$$
\begin{cases}\operatorname{div}\left(\frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}\right)=f & \text { in } \Omega \tag{2}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

Show that there exists at most one weak solution of (2).
Hint: First show for all $p, q \in \mathbb{R}^{n}$ that

$$
\left(\frac{p}{\sqrt{1+|p|^{2}}}-\frac{q}{\sqrt{1+|q|^{2}}}\right) \cdot(p-q) \geq \frac{\sqrt{1+|p|^{2}}+\sqrt{1+|q|^{2}}}{2}\left|\frac{p}{\sqrt{1+|p|^{2}}}-\frac{q}{\sqrt{1+|q|^{2}}}\right|^{2} .
$$

Then show $u=v$ in Ω for all weak solutions $u, v \in H_{0}^{1}(\Omega)$ of (2).

Theorem 2. Suppose B is a reflexive BANACH space. If all weakly convergent subsequences of a bounded sequence $\left\{u_{k} \mid k \in \mathbb{N}\right\} \subset B$ converge weakly to the same limit $u \in B$, then the whole sequence $\left(u_{k}\right)_{k \in \mathbb{N}}$ converges weakly to u.

Exercise 4. Suppose V is a reflexive Banach space and $A: V \rightarrow V^{\prime}$. Show that
(i) If A is hemi-continuous and monotone, then A is of type M .
(ii) If A is of type M and bounded, then A is demi-continuous.
(iii) If A is (strongly) continuous, then A is demi-continuous. If A is demi-continuous, then A is hemi-continuous.
(iv) If A is strongly continuous, then A is compact.

Solutions will be discussed on Thursday 4th of April 2019.

