Exercise Sheet 5"Nonlinear Partial Differential Equations" (nonlinear elliptic PDE, monotone operators, Galerkin-approximation, Helmholtz-decomposition)

Exercise 1. Suppose V is a reflexive Banach space, $\left(v_{k}\right)_{k \in \mathbb{N}}$ is a basis of $V, f \in V^{\prime}$, and $A: V \rightarrow V^{\prime}$ is a bounded and strongly monotone operator of type M.
For $m \in \mathbb{N}$, let $u_{m} \in V_{m}=\operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$ be a solution of

$$
\left\langle A\left(u_{m}\right), v_{k}\right\rangle_{V^{\prime}}=\left\langle f, v_{k}\right\rangle_{V^{\prime}}, \quad k=1, \ldots, m,
$$

and assume that

$$
\exists C>0:\left\|u_{m}\right\|_{V} \leq C \quad \forall m \in \mathbb{N} .
$$

Show that: There exists a $u \in V$ such that the sequence (u_{m}) converges to u in V and u is the unique solution of $A(u)=f$.

Exercise 2. Suppose $\Omega \subset \mathbb{R}^{3}$ is a bounded domain with smooth boundary $\partial \Omega, f \in$ $\left(L^{2}(\Omega)\right)^{3}$ and $X:=\left\{u \in H_{0}^{1}(\Omega)^{3} \mid \operatorname{div} u=0\right.$ a.e. in $\left.\Omega\right\}$. Consider the stationary StOKESequation

$$
\begin{cases}\nabla p-\Delta u=f & \text { in } \Omega \tag{1}\\ \operatorname{div} u=0 & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

(i) Determine a weak formulation of (1) and prove the existence of a unique weak solution $u \in X$.
(ii) How can you determine p from a weak solution $u \in X$?

Exercise 3. Let $n \in \mathbb{N}$ and $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary $\partial \Omega$. Consider the vector-space

$$
\begin{equation*}
H(\operatorname{div}, \Omega):=\left\{u \in L^{2}(\Omega)^{n} \mid \operatorname{div} u \in L^{2}(\Omega)\right\} . \tag{2}
\end{equation*}
$$

Show that
(i) The map $(\cdot, \cdot)_{H(\operatorname{div}, \Omega)}: H(\operatorname{div}, \Omega) \times H(\operatorname{div}, \Omega) \rightarrow \mathbb{C}$, defined as

$$
(u, v) \mapsto(u, v)_{H(\operatorname{div}, \Omega)}:=(u, v)_{L^{2}(\Omega)^{n}}+(\operatorname{div} u, \operatorname{div} v)_{L^{2}(\Omega)}, \text { is a scalar-product. }
$$

(ii) The vector-space $H(\operatorname{div}, \Omega)$ with scalar-product $(\cdot, \cdot)_{H(\operatorname{div}, \Omega)}$ is a Hilbert-space.

Exercise 4. Let $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with smooth boundary $\partial \Omega$, and

$$
H_{0}(\operatorname{div} 0, \Omega):=\left\{u \in L^{2}(\Omega)^{3} \mid \operatorname{div} u=0 \text { a.e. in } \Omega, T_{\nu}(u)=0\right\} .
$$

Prove the Helmholtz-decomposition: $\left(L^{2}(\Omega)\right)^{3}=H_{0}(\operatorname{div} 0, \Omega) \oplus \nabla H^{1}(\Omega)$. Hint: Use

EITHER $\nabla H^{1}(\Omega)$ is a closed subset of $L^{2}(\Omega)^{3}$.
OR Consider $\Delta p=\operatorname{div} u \quad$ in $\Omega, \quad T_{\nu}(\nabla p)=0 \quad$ on $\partial \Omega$, for $u \in L^{2}(\Omega)^{3}$ and study the existence of weak solutions p in a subspace of $H^{1}(\Omega)$.

The following result can be used without proof:
Theorem 1. Let $n \in \mathbb{N}, \Omega \subset \mathbb{R}^{n}$ be a bounded domain with boundary $\partial \Omega \in C^{2}, T$: $H^{1}(\Omega) \rightarrow L^{2}(\partial \Omega)$ be the standard trace operator, and $\nu(x)$ be the (outward pointing) unit normal vector at $x \in \partial \Omega$.
(i) There exists a continuous linear operator $T_{\nu} \in \mathcal{L}\left(H(\operatorname{div}, \Omega), T\left(H^{1}(\Omega)\right)^{\prime}\right)$, such that

$$
T_{\nu} u:=\left.(u \cdot \nu)\right|_{\partial \Omega} \text { for all } u \in \mathcal{D}(\bar{\Omega}),
$$

and the Stokes formula holds for all $u \in H(\operatorname{div}, \Omega)$ and $w \in H^{1}(\Omega)$:

$$
(u, \nabla w)+(\operatorname{div} u, w)=\left\langle T_{\nu} u, T w\right\rangle .
$$

(ii) Suppose $H_{0}(\operatorname{div}, \Omega)$ is the closure of $\mathcal{D}(\Omega)^{n}$ in $H(\operatorname{div}, \Omega)$. If $u \in H(\operatorname{div}, \Omega)$, then $u \in H_{0}(\operatorname{div}, \Omega)$ if and only if $T_{\nu}(u)=0$ in $T\left(H^{1}(\Omega)\right)^{\prime}$.

Solutions will be discussed on Thursday 11th of April 2019.

