Exercise Sheet 8 "Nonlinear Partial Differential Equations" (parabolic PDEs)

Exercise 1. Let V be a reflexive, separable Banach-space and $X:=L^{p}(0, T ; V)$ for some $p \in(1, \infty)$. Consider an operator $A: V \rightarrow V^{\prime}$ which has a space-time-interpretation $A: X \rightarrow X^{\prime}$. Show that
(i) A is V-monotone if and only if A is X-monotone.
(ii) A bounded operator A satisfying $\|A v\|_{V^{\prime}} \leq C\|v\|_{V}^{p-1}$ for all $v \in V$ is V-hemicontinuous (resp. V-demi-continuous) if and only if A is X-hemi-continuous (resp. X-demi-continuous).

Exercise 2. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary and $T>0$. Consider the operator $A: H_{0}^{1}(\Omega) \longrightarrow H^{-1}(\Omega)$ defined as

$$
A(u):=-\operatorname{div}(a(u) \nabla u),
$$

where $a \in C(\mathbb{R})$ and $0<\delta_{1} \leq a(u) \leq \delta_{2}$. Show that
(i) $A(u(\cdot)):[0, T] \longrightarrow H^{-1}(\Omega)$ is measurable for all $u \in X=L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$;
(ii) $A: X \longrightarrow X^{\prime}$;
(iii) $A: X \longrightarrow X^{\prime}$ is bounded;
(iv) $A: X \longrightarrow X^{\prime}$ is coercive.

Exercise 3. Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary, $2 \leq p<\infty$ and $T>0$. Consider the initial/boundary-value problem

$$
\begin{cases}u_{t}-\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)=0 & \text { in } \Omega \times(0, T), \tag{1}\\ u=0 & \text { on } \partial \Omega \times[0, T], \\ u(\cdot, t=0)=u_{0} & \text { in } \Omega,\end{cases}
$$

with $u_{0} \in L^{2}(\Omega)$. Show that a unique weak solution $u \in C\left([0, T] ; L^{2}(\Omega)\right)$ exists.

The solutions will be sent to boris.nectoux@asc.tuwien.ac.at before Thursday 16th of May to be corrected.

