Exercise Sheet 11 "Nonlinear Partial Differential Equations" (Nonlinear functionals, wave equation)

Consider a functional $\mathcal{F} : U \to \mathbb{R}$ where $U \subset X$ and X is a linear space over \mathbb{R} . If $u_0 \in U, \xi \in X$ and $\epsilon_0 > 0$ are such that $\{u_0 + \epsilon \xi \mid |\epsilon| < \epsilon_0\} \subset U$, then the function

 $\phi: (-\epsilon_0, \epsilon_0) \to \mathbb{R}, \quad \epsilon \mapsto \phi(\epsilon) := \mathcal{F}(u_0 + \epsilon \xi),$

is welldefined.

Definition 1. If $\phi'(0)$ exists, then $\delta \mathcal{F}(u_0, \xi) := \phi'(0)$ is called the *first variation* of \mathcal{F} at u_0 in direction of ξ .

Remark 2. The "variation" is a "weak" derivative concept, which does not need a topology on X.

Definition 3. Let X be a BANACH-space and X' its topological dual space. Let \mathcal{F} : $U \to \mathbb{R}$ be a functional for some open set $U \subset X$ and $u_0 \in U$.

(i) The functional \mathcal{F} is called GÂTEAUX differentiable at u_0 if there exists $l \in X'$ (depending on u_0) such that

$$\lim_{\epsilon \to 0} \left| \frac{\mathcal{F}(u_0 + \epsilon \xi) - \mathcal{F}(u_0) - \epsilon l(\xi)}{\epsilon} \right| = 0 \quad \text{for all } \xi \in X.$$

In this case $d\mathcal{F}(u_0, \cdot) = l$ is called the GÂTEAUX *derivative* of \mathcal{F} at u_0 .

(ii) The functional \mathcal{F} is called FRÉCHET differentiable at u_0 if there exists $l \in X'$ (depending on u_0) such that

$$\lim_{\xi \to 0} \frac{|\mathcal{F}(u_0 + \xi) - \mathcal{F}(u_0) - l(\xi)|}{\|\xi\|} = 0 \quad \text{for all } \xi \in X.$$

In this case $D\mathcal{F}(u_0, \cdot) = l$ is called the FRÉCHET *derivative* of \mathcal{F} at u_0 .

Exercise 1. Let X be a BANACH-space and X' be its topological dual space. Consider the functional $\mathcal{F}: U \to \mathbb{R}$ on some open subset $U \subset X$ and $u_0 \in U$. Show that

- (i) \mathcal{F} FRÉCHET differentiable at $u_0 \Rightarrow \mathcal{F}$ GÂTEAUX differentiable at $u_0 \Rightarrow$ First variation of \mathcal{F} exists in all directions ξ .
- (ii) \mathcal{F} FRÉCHET differentiable at $u_0 \Rightarrow$

$$D\mathcal{F}(u_0,\xi) = d\mathcal{F}(u_0,\xi) = \delta\mathcal{F}(u_0,\xi)$$
 for all $\xi \in X$

(iii) How are GÂTEAUX derivative resp. FRÉCHET derivative called in a finite-dimensional BANACH-space X?

Exercise 2. Let $X := H^2(\mathbb{R}^n_x \times \mathbb{R}_t)$. Consider the functionals

- (i) $\mathcal{E}_1: X \to \mathbb{R}, u \mapsto \mathcal{E}_1(u) := \int_{\mathbb{R}^n_x \times \mathbb{R}_t} -\frac{1}{2}u_t^2 + \frac{1}{2}|\nabla u|^2 + F(u) d(x, t)$, where $F \in C^1(\mathbb{R}; \mathbb{R})$ and $F: X \to L^1(\mathbb{R}^n_x \times \mathbb{R}_t)$.
- (ii) $\mathcal{E}_2 : X \to \mathbb{R}, u \mapsto \mathcal{E}_2(u) := \int_{\mathbb{R}^n_x \times \mathbb{R}_t} \frac{1}{2} \mathrm{Im}(u_t \bar{u}) + \frac{1}{2} |\nabla u|^2 + F(u) d(x, t)$, where $F \in C^1(\mathbb{C}; \mathbb{R}), F : X \to L^1(\mathbb{R}^n_x \times \mathbb{R}_t)$, and \bar{u} is the complex-conjugate of u.

Compute the *first variation* and the GÂTEAUX derivative of \mathcal{E}_1 and \mathcal{E}_2 .

Exercise 3. Consider the evolution group $T_0(t) := e^{it\Delta}$, $t \in \mathbb{R}$, for the free SCHRÖDINGER equation on $L^2(\mathbb{R}^n)$ with

$$T_0(t)u_0 := \begin{cases} u_0 & \text{for } t = 0, \\ u(x,t) = \int_{\mathbb{R}^n} u_0(\xi) \frac{1}{(4\pi i t)^{n/2}} e^{\frac{i|x-\xi|^2}{4t}} d\xi & \text{for } t \neq 0, x \in \mathbb{R}^n. \end{cases}$$

Show that all operators $T_0(t), t \in \mathbb{R}$, are unitary.

Exercise 4. Show that $\int (xu + 3tu^2) dx$ is a conserved quantity for the KdV equation

$$u_t = 6uu_x - u_{xxx} \; .$$

Solutions will be discussed on Thursday 13th of June 2019.