Exercise Sheet 12 "Nonlinear Partial Differential Equations"

Exercise 1. Consider the nonlinear Schrödinger-equation

$$
\mathrm{i} \psi_{t}+\psi_{x x}+\psi|\psi|^{2}=0 \quad \text { for } \quad(x, t) \in \mathbb{R} \times \mathbb{R}
$$

(i) Search for soliton-solutions of the form $\psi=r \mathrm{e}^{\mathrm{i}(\theta+n t)}$ with real-valued functions $r(x-c t)$ and $\theta(x-c t)$, where c and n are real constants. Derive ordinary differential equations for θ and r.
(ii) Show that, for $S=r^{2}$ and $F(S)=S^{3}-2\left(n-\frac{1}{4} c^{2}\right) S^{2}+B S+\frac{1}{2} A^{2}$ with arbitrary real integration constants A and B,

$$
\theta^{\prime}=\frac{1}{2}\left(c+\frac{A}{S}\right) \quad \text { and }\left(S^{\prime}\right)^{2}=-2 F(S)
$$

hold.
(iii) Consider the special case $A=B=0$. Find the roots of $F(S)$ and the corresponding periodic solutions ψ.
(iv) Show that a 'solitary-wave'-solution of the form

$$
\psi(x, t)=a \mathrm{e}^{\mathrm{i}\left(\frac{1}{2} c(x-c t)+n t\right)}\left(\cosh \left(\frac{a(x-c t)}{\sqrt{2}}\right)\right)^{-1}
$$

exists.

Exercise 2. Suppose $R>0,1<p<\infty$ and $r>2$. Consider the subset

$$
Y:=\left\{u \in C_{t}\left(\mathbb{R} ; L_{x}^{2}\left(\mathbb{R}^{n}\right)\right) \cap L_{t}^{r}\left(\mathbb{R} ; L_{x}^{p+1}\left(\mathbb{R}^{n}\right)\right) \mid\|u\|_{L_{t}^{\infty}\left(H_{x}^{1}\right)}+\|u\|_{L_{t}^{r}\left(W_{x}^{1, p+1}\right)} \leq R\right\}
$$

of the BANACH-space $C_{t}\left(L_{x}^{2}\right) \cap L_{t}^{r}\left(L_{x}^{p+1}\right)$ with norm $\|u\|_{L_{t}^{\infty}\left(L_{x}^{2}\right)}+\|u\|_{L_{t}^{r\left(L_{x}^{p+1}\right)}}$. Show that, Y is a closed subset of $C_{t}\left(L_{x}^{2}\right) \cap L_{t}^{r}\left(L_{x}^{p+1}\right)$, although Y is defined via a stronger norm.

Hint: use the following theorem.
Theorem 1 (Banach-Alaoglu-Bourbaki). Let X be a normed space, the dual X^{\prime} is hence also a normed space (with the operator norm). Then the closed unit ball of X^{\prime} is compact with respect to the weak* topology.

Exercise 3. Show that the Schrödinger-Poisson-equation

$$
\left\{\begin{array}{l}
\mathrm{i} \psi_{t}+\Delta \psi+f(\psi)=0 \\
\psi(t=0)=\psi_{0} \in H^{1}\left(\mathbb{R}^{3}\right)
\end{array} \quad \text { for }(x, t) \in \mathbb{R}^{3} \times \mathbb{R}\right.
$$

with $f(\psi)=\frac{1}{4 \pi}\left(|\psi|^{2} * \frac{1}{|x|}\right) \psi$, has a unique mild solution $\psi \in C\left(\mathbb{R}, H^{1}\left(\mathbb{R}^{3}\right)\right)$.
Remark: $V[\psi]:=\frac{1}{4 \pi}\left(|\psi|^{2} * \frac{1}{|x|}\right)$ solves the Poisson-equation $-\Delta V=|\psi|^{2}$.
Hint: Show via the generalized Young-inequality (Lemma 4.5) and the Sobolevimbedding $W^{1, p}\left(\mathbb{R}^{n}\right) \hookrightarrow C_{B}\left(\mathbb{R}^{n}\right)$ for $p>n$, that $f: H^{1}\left(\mathbb{R}^{3}\right) \rightarrow H^{1}\left(\mathbb{R}^{3}\right)$ is a local Lipschitz-continuous function. Use Theorem 4.6. Finally, show that

$$
\|\psi(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)} \quad \text { and } \quad E(\Psi(t))=\|\nabla \psi(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\frac{1}{2}\|\nabla V(t)\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}
$$

are conserved quantities and deduce the necessary a-priori-estimates.

Solutions will be discussed on Thursday 27th of June 2019.

