Exercise Sheet 12 "Nonlinear Partial Differential Equations"

Exercise 1. Consider the nonlinear SCHRÖDINGER-equation

$$i\psi_t + \psi_{xx} + \psi |\psi|^2 = 0$$
 for $(x,t) \in \mathbb{R} \times \mathbb{R}$.

- (i) Search for soliton-solutions of the form $\psi = r e^{i(\theta+nt)}$ with real-valued functions r(x-ct) and $\theta(x-ct)$, where c and n are real constants. Derive ordinary differential equations for θ and r.
- (ii) Show that, for $S = r^2$ and $F(S) = S^3 2(n \frac{1}{4}c^2)S^2 + BS + \frac{1}{2}A^2$ with arbitrary real integration constants A and B,

$$\theta' = \frac{1}{2}(c + \frac{A}{S})$$
 and $(S')^2 = -2F(S)$

hold.

- (iii) Consider the special case A = B = 0. Find the roots of F(S) and the corresponding periodic solutions ψ .
- (iv) Show that a 'solitary-wave'-solution of the form

$$\psi(x,t) = a e^{i(\frac{1}{2}c(x-ct)+nt)} \left(\cosh(\frac{a(x-ct)}{\sqrt{2}})\right)^{-1}$$

exists.

Exercise 2. Suppose R > 0, 1 and <math>r > 2. Consider the subset

$$Y := \left\{ u \in C_t(\mathbb{R}; L^2_x(\mathbb{R}^n)) \cap L^r_t(\mathbb{R}; L^{p+1}_x(\mathbb{R}^n)) \, | \, \|u\|_{L^\infty_t(H^1_x)} + \|u\|_{L^r_t(W^{1,p+1}_x)} \le R \right\}$$

of the BANACH-space $C_t(L_x^2) \cap L_t^r(L_x^{p+1})$ with norm $||u||_{L_t^\infty(L_x^2)} + ||u||_{L_t^r(L_x^{p+1})}$. Show that, Y is a closed subset of $C_t(L_x^2) \cap L_t^r(L_x^{p+1})$, although Y is defined via a stronger norm.

Hint: use the following theorem.

Theorem 1 (BANACH-ALAOGLU-BOURBAKI). Let X be a normed space, the dual X' is hence also a normed space (with the operator norm). Then the closed unit ball of X' is compact with respect to the weak* topology.

Exercise 3. Show that the SCHRÖDINGER-POISSON-equation

$$\begin{cases} \mathrm{i}\psi_t + \Delta\psi + f(\psi) = 0 & \text{for } (x,t) \in \mathbb{R}^3 \times \mathbb{R} ,\\ \psi(t=0) = \psi_0 \in H^1(\mathbb{R}^3) , \end{cases}$$

with $f(\psi) = \frac{1}{4\pi} (|\psi|^2 * \frac{1}{|x|})\psi$, has a unique mild solution $\psi \in C(\mathbb{R}, H^1(\mathbb{R}^3))$.

Remark: $V[\psi] := \frac{1}{4\pi} (|\psi|^2 * \frac{1}{|x|})$ solves the POISSON-equation $-\Delta V = |\psi|^2$.

Hint: Show via the generalized YOUNG-inequality (Lemma 4.5) and the SOBOLEVimbedding $W^{1,p}(\mathbb{R}^n) \hookrightarrow C_B(\mathbb{R}^n)$ for p > n, that $f : H^1(\mathbb{R}^3) \to H^1(\mathbb{R}^3)$ is a local LIPSCHITZ-continuous function. Use Theorem 4.6. Finally, show that

 $\|\psi(t)\|_{L^2(\mathbb{R}^3)}$ and $E(\Psi(t)) = \|\nabla\psi(t)\|_{L^2(\mathbb{R}^3)}^2 + \frac{1}{2}\|\nabla V(t)\|_{L^2(\mathbb{R}^3)}^2$

are conserved quantities and deduce the necessary a-priori-estimates.

Solutions will be discussed on Thursday 27th of June 2019.