Exercise Sheet 1 "Nonlinear Partial Differential Equations"

(Separation of variables, Blow-up, Method of characteristics, Nonlinear transformation)

Exercise 1. Consider the porous medium-equation

$$
\begin{equation*}
u_{t}-\Delta_{x}\left(u^{\gamma}\right)=0 \quad \text { in } \quad \mathbb{R}^{n} \times(0, \infty) \ni(x, t), \tag{1}
\end{equation*}
$$

for a constant $\gamma>1$ and a non-negative scalar function $u \geq 0$.
(i) Find a solution of equation (1) via a separation of variables, i.e. consider the ansatz $u(x, t)=v(t) w(x)$. Hint: Use $w(x)=|x|^{\alpha}$ for some $\alpha>0$.
(ii) Find a scaling-invariant solution $u(x, t)$ in the form $u(x, t)=\frac{1}{t^{\alpha}} f\left(\frac{|x|}{t^{\beta}}\right)$ for some constants $\alpha, \beta \in \mathbb{R}$ with $\alpha+1=\alpha \gamma+2 \beta$ and a function $f: \mathbb{R} \rightarrow \mathbb{R}$.

Sketch your solutions and discuss their behavior for $t \rightarrow \infty$.

Exercise 2. Suppose $T>0$ and $\Omega \subset \mathbb{R}^{n}$ is a bounded domain with smooth boundary. Consider the initial-value-problem (IVP) for a reaction-diffusion equation

$$
\begin{cases}u_{t}=\Delta u+f(u) & \text { in } G:=\Omega \times(0, T] \tag{2}\\ \frac{\partial u}{\partial \nu}=0 & \text { on } \partial \Omega \times(0, T) \\ u(\cdot, 0)=u_{0} & \text { in } \Omega\end{cases}
$$

and continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $u_{0} \in C(\bar{\Omega})$.
(i) Compute for $f(u)=u^{2}$ a spatial homogeneous solution $u=u(t)$ of (2) and discuss its asymptotic behavior for $t \rightarrow \infty$.
(ii) Prove that the IVP (2) for $u_{0} \in C(\bar{\Omega})$ with $\inf _{x \in \Omega} u_{0}(x) \geq c>0$ can not have a bounded classical solution $u(x, t)$ for sufficiently large T. Hint: comparison principle

Classical solutions $u, v \in C_{1}^{2}(G) \cap C^{0}(\bar{G})$ of (2) with $u \leq v$ on $\Omega \times\{0\}$ and $\frac{\partial u}{\partial \nu} \leq \frac{\partial v}{\partial \nu}$ on $\partial \Omega \times[0, T)$ satisfy $u \leq v$ on \bar{G}.

On the method of characteristics. The method of characteristics associates to a nonlinear PDE of first order

$$
\begin{equation*}
F(D u, u, x)=0 \quad \text { in } \Omega \subset \mathbb{R}^{n} \tag{3}
\end{equation*}
$$

a system of ordinary differential equations

$$
\left\{\begin{array}{l}
\dot{p}(s)=-D_{x} F(p(s), z(s), x(s))-D_{z} F(p(s), z(s), x(s)) p(s) \tag{4}\\
\dot{z}(s)=D_{p} F(p(s), z(s), x(s)) \cdot p(s) \\
\dot{x}(s)=D_{p} F(p(s), z(s), x(s))
\end{array}\right.
$$

with $F(p(s), z(s), x(s))=0$ for s in a suitable interval $I \subset \mathbb{R}$. A solution $u(x)$ of boundary value problem (BVP)

$$
\begin{cases}F(D u, u, x)=0 & \text { in } \Omega \subset \mathbb{R}^{n} \tag{5}\\ u=f & \text { on } \Gamma \subseteq \partial \Omega\end{cases}
$$

with non-characteristic boundary conditions, can be constructed from solutions of (4) with suitable initial conditions, see Evans 'Partial Differential Equations' Section 3.2.

Exercise 3. Consider the BVP for the Eikonal-equation in geometrical optics

$$
\begin{cases}|\nabla u|=1 & \text { in } \Omega=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\} \tag{6}\\ u=\frac{x}{\sqrt{2}} & \text { on } \partial \Omega\end{cases}
$$

Compute a solution of (6) via the method of characteristics.

Hint: In our setting, the initial conditions

$$
\begin{equation*}
x(0)=x^{0}=\binom{x}{0} \in \partial \Omega, \quad z(0)=z^{0}, \quad p(0)=p^{0}=\binom{p_{1}^{0}}{p_{2}^{0}} \in \mathbb{R}^{2} \tag{7}
\end{equation*}
$$

have to satisfy (the compatibility conditions),

$$
\begin{equation*}
z^{0}=f\left(x^{0}\right), \quad p_{1}^{0}=\frac{\partial f}{\partial x}\left(x^{0}\right), \quad F\left(p^{0}, z^{0}, x^{0}\right)=0 \tag{8}
\end{equation*}
$$

which are non-characteristic, if

$$
\begin{equation*}
D_{p_{2}} F\left(p^{0}, z^{0}, x^{0}\right) \neq 0 \tag{9}
\end{equation*}
$$

Remark. This method of characteristics is local: it provides a solution of (6) in a neighborhood of a point $x(0) \in \partial \Omega$ in $\bar{\Omega}$ such that (9) holds.
Remark. Another method to find solutions of (6) would consist in applying Theorem 5.1 in the book of P.L. Lions:
P.L. Lions, Generalized solutions of Hamilton-Jacobi equations, Volume 62, London Pitman, 1982.

Exercise 4. Consider the Cauchy problem for a viscous HAMILTON-JACOBI-equation

$$
\begin{cases}u_{t}-\varepsilon \Delta u+b|\nabla u|^{2}=0 & \text { for }(x, t) \in \mathbb{R}^{n} \times(0, \infty) \tag{10}\\ u(x, 0)=g(x) & \text { for } x \in \mathbb{R}^{n}\end{cases}
$$

with $b \in \mathbb{R}, \varepsilon>0$ and a function $g: \mathbb{R} \rightarrow \mathbb{R}$.
(i) Suppose u is a classical solution of (10). Compute a function $\phi: \mathbb{R} \rightarrow \mathbb{R}$, such that $v=\phi(u)$ is a solution of a linear PDE.
(ii) Determine the Cauchy problem for $v=\phi(u)$.

Solutions will be discussed on Thursday 14th of March 2017.

