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Exercise 1. Let n = 2, T > 0 and Ω ⊂ R2 be a smooth bounded domain. Let
X := L2([0, T ], V ), V := {ψ ∈ H1

0 (Ω), div(ψ) = 0 a.e. in Ω}, and H be the closure of V
in L2(Ω). Consider the Navier-Stokes equation

∂tu−∆u+ (u · ∇)u+∇p = f in Ω× [0, T ],

with
div u = 0 in Ω× [0, T ], u = f on ∂Ω× [0, T ], and u(., 0) = u0 in Ω,

where f ∈ L2([0, T ], V ′).
(i) Recall the definition of a weak solution of the above Navier-Stokes equation as well
as the Gagliardo-Nirenberg inequality.
(ii) Complete the proofs of Theorems 3.25 and 3.26 in the lecture notes by proving the
two following points left there as exercises:

a. Concerning uniqueness of the weak solution (Theorem 3.25). Show that, if u1 and
u2 are two weak solutions of the transiente Navier-Stokes equation, it holds:∫

Ω

(u2 · ∇)w · w dx = 0,

where we recall w := u1 − u2.

b. Concerning the properties of the differential operator A(φ) := −∆φ+(φ ·∇)φ used
in the proof of Theorem 3.26. Show that for T > 0,

A : X ∩ L∞([0, T ], H)→ X is bounded.

Where do we use this property of A in the proof of Theorem 3.26?

Remark (a bit of history). In is PhD thesis in 1933, Jean Leray proved the existence
of weak solutions on R+ (also referred as Leray’s solutions in the literature) when n =
2, 3 of the Navier-Stokes equation. Notice that at this period, Sobolev spaces had not
been introduced yet, he worked with a dual definition of what we now call H1(Ω). He
then proved the stability of weak solutions when n = 2 leading to the uniqueness of a
weak solution. When n = 3, assuming a little bit more regularity of a weak solution
on an interval [0, T ] (actually L4([0, T ], V )), he proved uniqueness on [0, T ] of a weak
solution. Finally, still when n = 3, criterions were given to ensure that weak solutions
are L4([0, T ], V ) for times T not too large if the data (u0, f) are smooth enough. Let
us mention that lower bounds when n = 3 on the maximal existence time T ∗ of a weak
solution in L4

loc([0, T
∗), V ) were also provided in the literature. Global smoothness and

uniqueness of a weak solution when n = 3 are still a very active field of research. Source:

https://www.ljll.math.upmc.fr/chemin/pdf/2016M2EvolutionW.pdf



Exercise 2. Let n = 2, 3 and Ω ⊂ Rn be a smooth bounded domain. Let u0 ∈ L2(Ω).
Consider the initial/boundary-value problem for the incompressible Navier-Stokes equa-
tion:

∂tu−∆u+ (u · ∇)u+∇p = 0 in Ω× R∗+,

with
div u = 0 in Ω× R∗+, u = 0 on ∂Ω× R+, and u(., 0) = u0 in Ω.

Show that a classical solution (u, p) satisfies the estimate

for all t ≥ 0, ‖u(., t)‖L2(Ω) ≤ e−λt‖u0‖L2(Ω)

for some λ > 0 independent of t and (u, p).

Exercise 3. Let C > 0. Consider for each m > 1 the function

Um : Rn × R∗+ → R, (x, t) 7→ t−λ
(
C −K |x|

2

t
2λ
n

) 1
m−1

+
,

where λ := n
n(m−1)+2

and K := λ(m−1)
2mn

. Let us mention that the function Um is known as
Barenblatt-solution of the porous medium-equation

∂tu−∆(um) = 0 in Rn × R∗+.

Part 1.
(i) Show that t > 0 7→

∫
Rn Um(x, t) dx is constant and Um → Mδ where δ is the Dirac

distribution and M :=
∫
Rn Um(x, t) dx.

(ii) Let us assume that Um is normalized such that M = 1: what do you expect to be
the limit behaviour of Um when m→ 1+?
Prove that your guess is true. You can use without proof that M = 1,

C = 1/D
1
γ ,

where D = 1
2
K−

n
2 n × ωnB(n

2
, m
m−1

) and γ = n
2(m−1)λ

, wn being the volume of the unit
ball in Rn and B the Euler beta function.

Part 2.
(i) Discuss the regularity of Um.
(ii) Show that, for τ > 0, the function (x, t) 7→ Um(x, t + τ) is a weak solution of the
porous medium-equation

∂tu−∆(um) = 0 in Rn × R∗+.

Solutions will be discussed on Thursday 6th of June 2019.


