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Übungsaufgaben zur VU Computermathematik

Serie 5

Einige Themen,wie z.B. plot-Befehle, Integration mittels int und das ‘if‘-Konstrukt, wurden in der ersten VO
noch nicht besprochen. Dafür werden jedoch genaue Hinweise gegeben. Schauen Sie auch in die Maple-Hilfe.

Es sei darauf hingewiesen, dass wir hier nach wie vor noch keine ‘echten’ Prozeduren (Unterprogramme), sondern
nur Funktionen verwenden, weiters keine expliziten Steuerkonstrukte wie if, do (Schleifen) etc. In den folgenden
Aufgaben lässt sich alles durch ‘Einzeiler’ mittels impliziter Schleifen ausdrücken, unter Verwendung von seq(...),
add(...), etc. In Aufgabe 5.5 verwenden Sie die Kurz-Syntax ‘if‘(...), um eine einfache Fallunterscheidung
zu realisieren.

Exercise 5.1.

a) Use the command 1 plots[listplot] to plot the points (xn, yn) = (n, pn) in the (x, y)-plane. Here, pn =
ithprime(n) is the n-th prime number. For larger values of n, e.g., n up to 1000, this looks pretty regular.

b) Generate (e.g., for n up to 1000) a list of the numbers

n lnn

pn

evaluated using evalf. This gives a conjecture concerning the asymptotic distribution of prime numbers
within the natural numbers. Which one?

Exercise 5.2. Indexing of objects of type list begins with 1. However, sometimes it is more useful to start,
e.g., with 0 (like in C). This is supported by the data type Array (later), but you can also realize this ‘manually’
using lists, as an exercise:

a) Design a function el(l,pos,startindex) which assumes that indexing begins with the integer startindex
and returns the pos - th element of the list l with respect to this indexing. E.g.,

el([1,2,3,4],-1,-2) --> 2

b) Design a function elC(l,pos) which works like el(l,pos,0), e.g.,

elC([1,2,3,4],2) --> 3

c) Design a function setelC(l,pos,value) which assigns the value value to the pos - th element in the list l
with respect to ‘C-indexing’ according to b), and returns the new, modified list as its function value. E.g.,

setelC([1,2,3,4],3,999) --> [1,2,3,999]

Hint: This would be easy to realize within a procedure. But since setelC should be a function (a ‘one-liner’),

setelC := (l,pos,value) -> ...

you have to construct a ‘formula’ which generates the modified list.

1 Syntax: plots[listplot](...) activates the function listplot contained in the package plots. You can also activate the complete
package using with(plots); and simply call listplot.



Remark: Concerning storage, it would be more efficient to modify the given list instead of creating a new one.2

This way of manipulating data by functions or procedures is called call by reference, and is not directly supported
in Maple. (In C, you would pass a pointer to the object). On the other hand, you can ‘overwrite’ the old list with
the new one:

l := setelC(l,pos,value);

Exercise 5.3.

a) Design a function merge(L,K) which merges two lists L,K into a single list according to

[L[1],K[1],L[2],K[2],...]

If one of the lists is longer than the other one, the remaining elements are appended at the end of the new list.
Make sure that empty lists are correctly handled.

Hint: Use seq. Find out how to generate a sequence of sequences L[i],K[i].

b) Design a function listp(L,K) which returns a list of lists as indicated in the following example:

> L := [1,2,3]:

> K := [A,B,C,D]:

> listp(L,K);

[[[1,A],[1,B],[1,C],[1,D]], [[2,A],[2,B],[2,C],[2,D]], [[3,A],[3,B],[3,C],[3,D]]]

Hint: Use seq.

Exercise 5.4. Use plots[pointplot] to draw a regular polygon with n vertices (e.g., an equal-sided triangle
for n = 3, a square for n = 4). Pack the your plot command into a function draw polyhedron(n,...) which
also expects more parameters, e.g., for the color or line thickness of the plot (these are passed as options to
pointplot).

Exercise 5.5.

a) Functions can also be recursive. Consider the following recursive definition:

f0(x) =
ex − 1

x
, fn(x) :=

1

x

(
− 1 +

n−1∑
j=0

fj(x)

n− j

)
, n = 1, 2, 3, . . .

Design a function frec(x,n) which implements this recursion.

Hint: For the recursion you need an if-construct. Use

‘if‘(n=0, value for n = 0, value for n ̸= 0);

(‘if‘ with backward quotes).

b) Verify experimentally for n = 0, 1, 2, 3 that

fn(x) = (−1)n
∫ 1

0
e(1−t)x

(
−t

n

)
dt .

(In fact, this true for all n ∈ N, but the proof is not so easy.) Use int(...,t=0..1) for evaluating the integrals.
Here,(

τ

n

)
=

τ(τ − 1) · · · (τ − n+ 1)

n!
, τ ∈ R, n ∈ N

is the generalized binomial coefficient (binomial(tau,n)), a polynomial of degree n in τ . You have to expand

this expression under the integral to make it work (try without and with expand).

2This issues are, of course, only relevant for codes manipulating very large objects. In most cases, you will not care very much about
this.



Exercise 5.6. Some analysis:

Use sum(...,n=0..infinity) to ‘verify’ the following Taylor series expansion3 (x, τ ∈ R):

(1 + x)τ =
∞∑
n=0

(
τ

n

)
xn

This is the binomial series – a generalization of the binomial theorem. Evidently, sum ‘knows’ this series – it
is built-in as static knowledge like many other series expansions from analysis. Now we ask ourselves for what
values of x this series is convergent (Maple does not provide this information to you). Use the definition of the
generalized binomial coefficient and the quotient criterion to decide on this question. This requires a little bit of
computation which you can do by hand or with the help of Maple.

Can you also prove that the limiting function is indeed f(x) = (1 + x)τ ?

The series is also convergent for x = 1. Check using sum – a nice formula.

Exercise 5.7. TheMöbius strip is a two-dimensional manifold in R3 which is not orientable. It can be represented
by the coordinate functions

x(φ, t) = cosφ (r + t cos(φ/2)),

y(φ, t) = sinφ (r + t cos(φ/2)), φ ∈ [0, 2π], t ∈ [−a, a]

z(φ, t) = t sin(φ/2)).

Here, r is the radius, and 2a is the width of the strip. Consult ? plot3d in order to produce a nice plot.

Note that you also can manipulate the plot interactively in various ways (right mouse button).

Furthermore, animate such a plot using plots[animate3d] and produce a video. Here the principle is that
a parameter, e.g., the radius, can be varied, and animate3d produces a sequence of the corresponding plots.
animate3d works like plot3d but with an additional argument controlling the animation. After calling animate3d
you see the first frame and you can start the video interactively. Export the video to gif format.

Exercise 5.8. A matrix4 M ∈ Rm×n (m rows, n columns) can be represented by a list of length m consisting
of lists of length n (the rows of M).

a) Design a function mcount(M) which returns the number of elements in such an object which are not equal to 0.

b) Design a function mfliplr(M) which reverses the ordering of elements in each row and returns the result in
the same format.

c) Design a function mrowtocol(M) which converts such an object into the analogous ‘columnwise’ representation,
where the role of rows and columns is interchanged.

Hint: Use em seq in a nested (‘geschachtelt’ ) way.

3The proof of the validity of this series expansion is an elementary using Taylor’s theorem. But this is not the topic of this exercise.
4Lists are usually only efficient for storing static, ‘read-only’ objects, but for ‘small’ objects efficiency is not an issue. A more

economical and versatile way to represent (larger) matrices is to use the data type Array or Matrix. This will be discussed later on in
the lecture.


