
Winfried Auzinger Sommersemester 2013
Dirk Praetorius 2./8.05.2013

Übungsaufgaben zur VU Computermathematik

Serie 6

Exercise 6.1. Study the help pages

? interface

(concerning control of the user interface), and

? kernelopts

(concerning control of the behavior of the kernel), and get an overview. Try out what you find interesting
and collect this material in a worksheet.

Exercise 6.2.

a) Do you know how whether the following series are convergent and what the respective values are?
Maple knows – test it: 1

∞∑
k=1

(−1)k−1

2k − 1
=

π

4
,

∞∑
k=1

(−1)k−1

2k
= 1

2
ln 2 . (1)

b) Use taylor to compute the first terms of the Taylor expansion of the functions

f(x) = arctan x, f(x) = ln(1 + x)

with respect to x0 = 0. From the result it is evident how the Taylor series of these functions look like.
Note that the arctan - series converges to arctanx for all x ∈ R, and the ln(1 + x) - series converges
to ln(1 + x) for −1 < x ≤ 1.

Now, turn the situation around: Specify these series in Maple using sum, summing up to infinity,
and check whether Maple is able to identify them with the corresponding functions. Does Maple care
about the convergence domain (which is finite for ln(1 + x))?

Furthermore, use these series to verify the formulas (1) by appropriate choice of x.

c) Design a procedure taycoe(f,x0,n) which, for a given (infinitely differentiable) function f(x), re-
turns its n-th Taylor coefficient

f (n)(x0)

n!

for given n ∈ N and x0 ∈ R, and use it to design your own version of taylor, e.g., mytaylor(f,n,x0)
generating the Taylor polynomial of degree n. Your procedure should return the polynomial function

h 7→
n∑

k=0

f (k)(x0)

k!
hk

in this way:

1 ∞ = infinity



return h->add(...);

Remark: This amounts to a naive, brute-force computation. E.g., to compute the 1001-th Taylor
coefficient of f(x) = arctan x, your procedure taycoe will compute the 1001-th derivative (a high-
degree rational function) and evaluate it at x0 = 0.

In contrast, the general form of the Taylor series of many standard functions like, e.g., arctanx, is
built-in to the Maple in an internal database as static knowledge. Furthermore, a number of more
or less tricky symbolic algorithms for yielding general formulas for Taylor coefficients is internally
implemented.

Exercise 6.3.

a) Check by experiment the validity of the Leibniz formula for the n-th derivative of a product of two
functions,

dn

dxn
(f · g)(x) =

n∑
k=0

(
n

k

)
dk

dxk
f(x) · dn−k

dxn−k
g(x) ,

for n = 1, 2, 3, . . .. Use the derivative operator D. (In Maple, the binomial coefficient is binomial(n,k).)

c) Design a procedure htvol(n) which computes the n-dimensional volume of a hypertetraeder ⊆ Rn,

Vn =

∫ 1

x1=0

(∫ x1

x2=0

(
. . .

∫ xn−1

xn=0

1 dxn . . .
)
dx2

)
dx1

for given n ∈ N. Testing n = 1, 2, 3, . . . you see how the general solution Vn will look like (it can be
easily verified by induction).

Exercise 6.4. Consider the recursion

xn := c xn−1 + an , n = 1, 2, 3, . . .

with a parameter c and a given initial value x0.

a) Implement this in form of a recursive procedure,

xrec := proc(n,x0,c,a) ... end proc;

Your procedure expects a function a := n-> ... Check what happens when this function is not
explicitly specified.

b) Call your procedure with n = 0, 1, 2, 3, . . . and use expand in order to find the general formula for
the solution xn. This is easy to see (and easy to prove by induction for general n).

c) Consider numerical evaluation of the sequence xn, e.g.,

seq(xrec(n,x0,c,a),n=0..N);

with numerically specified data c and a(.), for larger values of N , e.g., N = 1000. Is this efficient?
Compare this with a simple loop for computing the sequence. Compare computing times using the
CPU clock time().



Exercise 6.5.

a) Consider the two-step recursion

xn := a xn−1 + b xn−2 , n = 2, 3, 4, . . . (2)

where starting values x0 and x1 are given in some way. We wish to find the general form if the
solution. To this end we use the ansatz

xn = λn

with some parameter λ and plug it into (2). Conclude that there are two possible values λ = λ1

and λ = λ2 such that the ansatz works. Use Maple to express λ1 and λ2 in terms of the arbitrary
parameters a and b. (Depending on a and b, the solution may be real or complex).

Then, the general solution of recursion (2) is given by

c1 λ
n
1 + c2 λ

n
2

with arbitrary constants c1, c2.

b) Use a) in order to generate an explicit formula for the Fibonacci numbers Fn defined by F0 = 0,
F1 = 1, and

Fn := Fn−1 + Fn−2 , n = 2, 3, 4, . . . (3)

Verify that your Fn indeed satisfy (3).

c) Use plots[pointplot] to plot the coordinate pairs (x, y) = (0, F0), (1, F1), (2, F2), (3, F3), . . ..

Exercise 6.6. Proceed in an analogous way as in 6.5 to solve the recursion

xn = xn−1 − xn−2 + xn−3 , n = 3, 4, 5, . . .

with given initial values x0 = 0, x1 = 1, and x2 = 2. (You may use variables with indices, lambda[1],
lambda[2], lambda[3], and c[1],c[2],c[3].)

For two of the λ’s you will obtain complex values,2 but the solution xn is of course real. You should be
able to verify by simplification and testing the recursion that the solution is given by

xn = 1− cos
nπ

2
, n = 0, 1, 2, 3, . . .

In contrast to the Fibonacchi sequence (see 6.5), this solution is bounded and oscillatory.

Exercise 6.7. Design a procedure myrooti(x,n,tol,maxiter) for numerical approximation of y = n
√
x

by means of a interval bisection method. Here we assume that x ∈ (0, 1) and n ∈ N is given. We know that
n
√
x ∈ (0, 1), and the function n

√
x is strictly monotonously increasing. The bisection method starts with

y = 1
2
. If yn = x, we are done. Otherwise, the solution is either contained in [0, y] or in [y, 1], respectively,

depending on the sign of the residual yn − x, and so on. Use this idea to program the bisection method,
and realize it using a loop.

Implement this algorithm using exact (rational) arithmetic for given rational x. However, the solution will
be irrational (algebraic) in general. Stop the iteration when the length of the current interval containing
the true solution is ≤ tol, where tol is a given tolerance, e.g., tol = 1E-3 for moderate accuracy. The
iteration should also be stopped when maxiter bisection steps have been performed without satisfying the
tolerance.

2 The imaginary unit is represented by the built-in variable I.



Note that tol and maxiter are actually not independent, because you can predict how many iterations will
be sufficient to satisfy the given tolerance. The purpose of the parameter maxiter is simply to implement
an ‘emergency exit’.

Procedure myrooti should return

[[yleft,yright],converged] or y

In the first case, [yleft,yright] represents an interval containing the true solution, and converged=true

if it satisfies the tolerance, otherwise converged=false (this occurs if the iteration stops prematurely at
maxiter iterations). The second case indicates that the exact solution y has been found (special case).

(Note that in practice, such an algorithm will be implemented in floating point arithmetic, e.g., by using
evalf. Also note that bisection converges because n

√
x is monotone, but it converges rather slowly.)

Exercise 6.8. The package plots, to be activated by

with[plots];

contains many different plotting functions:

animate, animate3d, animatecurve, arrow, changecoords, complexplot, complexplot3d, conformal,

conformal3d, contourplot, contourplot3d, coordplot, coordplot3d, densityplot, display,

dualaxisplot, fieldplot, fieldplot3d, gradplot, gradplot3d, implicitplot, implicitplot3d,

inequal, interactive, interactiveparams, intersectplot,

listcontplot, listcontplot3d, listdensityplot,

listplot, listplot3d, loglogplot, logplot, matrixplot, multiple, odeplot, pareto,

plotcompare, pointplot, pointplot3d, polarplot, polygonplot, polygonplot3d, polyhedra_supported,

polyhedraplot, rootlocus, semilogplot, setcolors, setoptions, setoptions3d, spacecurve,

sparsematrixplot, surfdata, textplot, textplot3d, tubeplot

Look at the documentation of this package and collect some cases of interest to you in a worksheet. Also
play with options in order to produce ‘nice-looking’ results.

In particular, this package contains the useful function display which allows you to display several plots
simultaneously, e.g., like in

p0 := plot(0,x=0..1);

pf := plot(x^2,x=0..1);

display(p0,pf);


