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Übungsaufgaben zur VU Computermathematik

Serie 7

Eine Sammlung verschiedener Problemstellungen.

Exercise 7.1. Design a procedure mynormal(r) which expects a rational expression with integer coeffi-
cients as its argument and normalizes it in such a way that the numerator and denominator polynomials
are ‘monic’, i.e., the coefficients at their highest power is 1, with an extra factor such that the result is
correct.

Hint: Use degree and coeff.

Exercise 7.2. Design a procedure argmax(x::{Vector,Matrix}),absolute value) which accepts ar-
guments of type Vector or Matrix and returns the positions1 of the maximal elements (in the case
absolute value=false), or the position of the elements with the largest absolute value (in the case
absolute value=true), in a numerical object x of type Vector or Matrix. For a Matrix, the ‘position’ is
the corresponding pair of indices. Return the answer in form of a list [of lists] ordered by position and, in
addition, the value of the entries where the maximum is attained.

(In Maple, there is max but there seems not to exist something like argmax.)

Use sequential search. For the case of a Matrix, design two versions of argmax: Sequential search through
the matrix, or iterating over its rows or columns using recursive calls of argmax.

Hint: Using type you can determine the type of an object.

Exercise 7.3. Some advanced programming features:

• The overload command allows you to split the implementation of a command that operates on different
argument types into separate procedures. The basic syntax is overload(l) where l is a list of procedures.
A simple example: Assume you want to represent matrix right division A/B := A·B−1 and normal division
a/b by a single function slash. This works as follows:

slash := overload([

proc(A::Matrix,B::Matrix)

option overload:

return A.B^(-1)

end proc,

proc(a::anything,b::anything)

option overload:

return a/b

end proc

]):

1The maximal element may not be unique.



The first branch only accepts arguments of type Matrix. The data type anything means ‘any possible
type’, i.e., the second procedure acts as a default. Such a construction is often more useful than embedding
various if - constructs into a single procedure.

• The try ... catch ... end try construct allows you to ‘protect’ parts of your code, with a controlled
error handling by the catch - branch if the try - branch fails. A simple example:

try

M := Matrix(m,m);

N := Matrix(n,n);

K := Matrix(k,k);

catch:

error "One of the matrix dimension has not been correctly specified."

end try;

This is often more useful than trying to avoid in advance that such an error occurs by various if - constructs.

a) Verify the above simple example for use of overload, and extend it by a try ... catch ... end

try construct which, for the case that dividing by B or b, respectively, an error occurs, the catch -
branch forces a return of infinity.

b) Refine a) in the following way:

Add extra if - constructs in order to return FAIL when both arguments passed to slash are 0 or
zero-matrices, respectively, if A or B is not a square matrix, or if the dimensions of the (square)
matrices A and B are different.

Exercise 7.4. Check the help page ? index and look for packages. Here you see a complete list of
packages. Make your choice, study the documentation, and create a worksheet with explaining features
and showing some examples.

A package is activated via with(name of package);

Example: If you like discrete mathematics and combinatorics, you may look at the package combinat.

Exercise 7.5. Let a triangle ∆ = ABC ⊆ R2 be given, with A = (x1, y1), B = (x2, y2), and C = (x3, y3).
To compute the integral of a real-valued function f(x, y) defined over ∆, we represent points the (x, y) ∈ ∆
in the form[
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, 0 ≤ ξ + η ≤ 1,

with coordinates (ξ, η) ∈ ∆ref , where ∆ref is the simple ‘reference triangle’ with vertices (0, 0), (1, 0), and
(0, 1). Note that (x(0, 0), y(0, 0)) = (x1, y1), (x(1, 0), y(1, 0)) = (x2, y2), and (x(0, 1), y(0, 1)) = (x3, y3).

The 2-dimensional substitution formula reads∫∫
∆

f(x, y) dy dx =

∫∫
∆ref

δ(ξ, η)f(x(ξ, η), y(ξ, η)) dη dξ .

with the Jacobian determinant δ(ξ, η) of the coordinate transformation. In our case, δ(ξ, η) is constant:

δ(ξ, η) ≡ δ = (x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1),

which corresponds to the ratio of the areas of the two triangles. Thus,∫∫
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Design a procedure triangleint(Delta,f) which computes the integral in this way Specify the vertices
of the triangle by Delta=[[x[1],y[1]],[x[2],y[2]],[x[3],y[3]]].

Exercise 7.6. The function plots[animate] can be used to produce videos, i.e., a sequence of plots
depending on a parameter. After defining the corresponding plot structure, rendering of the animation is
done in an interactive way. Consult the help page for plots[animate].

Use this feature to visualize the behavior of the Taylor polynomials
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of the function ln(1+x) in the interval (−1, 1). Create a nice animation. In this case, the varying parameter
is the polynomial degree n.

Exercise 7.7.

Design a recursive procedure tree(level,pos,len,scale) which generates a plot of a ‘fractal’ tree. The
arguments:

• level specifies the desired number of recursive levels.

• pos is a list [x,y] containing the cartesian coordinates of the root of the current tree.

• The current tree consists of 3 branches emanating from the root with inclination −45◦, vertically,
and +45◦, and len specifies the current length of the vertical branch of the current tree, see figure.

• scale is a factor with which len is multiplied when proceeding to the next recursive level.

The recursion works in the following way.

tree(level,pos,len,scale)

does the following job:

(i) Generate the 3 branches of the tree specified by the arguments pos and len.

(ii) If level>1 : Perform 3 recursive calls of tree with level-1, 3 new values for pos which correspond
to the endpoints of the branches of the current tree, and with len replaced by scale*len.

The figure displayed above was generated by calling tree(4,1,[0,0],1/4).

Hint: Use global variables p and counter. Before calling tree, these are initialized: p:=’p’, and counter:=0.
When tree builds up a branch, the value counter of is increased by 1, the plot of the branch is generated
using, e.g., plots[pointplot], and the resulting plot structure is saved in p[counter]. After activating
tree you can render these plots using plots[display]. Playing with the parameters level (initial value
on call) and scale you can generate different funny trees.

Exercise 7.8. Generalize your procedure tree from 7.7. Play with plot options (e.g., line thickness,
color), and generalize the procedure by plotting more branches at different angles, or by introducing a
certain stochastic behavior (e.g., random number of branches of a random behavior of scale at each level,
using rand()), or whatever you may try.


