Übungen zur Vorlesung
 Computermathematik

Serie 2

Aufgabe 2.1. Write a MATLAB function pnorm, which, given a vector $x \in \mathbb{C}^{n}$ and $1 \leq p<\infty$, returns the ℓ^{p}-norm of x

$$
\|x\|_{p}:=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p}
$$

Avoid loops, and use only arithmetics and appropriate vector/matrix functions and indexing instead.

Aufgabe 2.2. Write a MATLAB function cut, which, given a vector $x \in \mathbb{R}^{N}$ and a constant $S \geq 0$, returns a vector $y \in \mathbb{R}^{n}$, obtained from x by removing all the entries x_{j} with $\left|x_{j}\right|>S$, e.g., $x=(0,2,1,4,5,0,0,1,2) \in \mathbb{R}^{9}$ and $S=1$ yield $y=(0,1,0,0,1) \in \mathbb{R}^{5}$. Avoid loops, and use only arithmetics and appropriate vector/matrix functions and indexing instead.

Aufgabe 2.3. Write a MATLAB function matrix, which, given $n \in \mathbb{N}$, returns the matrix $A \in \mathbb{N}^{n \times n}$ with $A_{j k}=j+k$ and the checkerboard matrix $B \in \mathbb{N}^{n \times n}$ with

$$
B_{j k}= \begin{cases}1 & \text { for } j+k \text { even, } \\ 0 & \text { for } j+k \text { odd }\end{cases}
$$

Generate B from A exploiting mod. Avoid loops, and use only arithmetics and appropriate vector/matrix functions and indexing instead.

Aufgabe 2.4. Any polynomial of degree n is uniquely determined by the $n+1$ values of its coefficients. Consider the polynomials $p(x)=\sum_{j=0}^{m} a_{j} x^{j}$ and $q(x)=\sum_{k=0}^{n} b_{k} x^{k}$, as well as the vectors of their respective coefficients $a \in \mathbb{C}^{m+1}$ and $b \in \mathbb{C}^{n+1}$. The sum $p+q$ is a polynomial of degree $\max \{m, n\}$. Write a MATLAB function addpol, which, given $a \in \mathbb{C}^{m+1}$ and $b \in \mathbb{C}^{n+1}$, returns the coefficient vector $c \in \mathbb{C}^{\max \{m, n\}}$ of $(p+q)(x)=\sum_{\ell=0}^{\max \{m, n\}} c_{\ell} x^{\ell}$. The function has to work for both column and row input vectors a and b, but it always returns a column vector c. To this end, the function reshape or the syntax vector(:) might be useful. Avoid loops and if-conditions, and use only appropriate arithmetics and vector/matrix functions and indexing instead.

Aufgabe 2.5. Write a MATLAB function diffpol which, given a polynomial $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ defined through the coefficient vector $a \in \mathbb{C}^{n+1}$, returns the coefficient vector of the first derivative p^{\prime}. The function has to work for both column and row input vectors, but it always returns a column vector. Avoid loops, and use only appropriate arithmetics and vector/matrix functions and indexing instead.

Aufgabe 2.6. Write a MATLAB function evalpol which, given a polynomial $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ defined through its coefficient vector $a \in \mathbb{C}^{n+1}$, and a matrix $x=\left(x_{j k}\right) \in \mathbb{C}^{M \times N}$ of evaluation points, returns the evaluation matrix $\left(p\left(x_{j k}\right)\right) \in \mathbb{C}^{M \times N}$. The function has to work for both column and row input vectors. Do not forget that all the quantities are possibly complex-valued. Avoid loops, and use only appropriate arithmetics and vector/matrix functions and indexing instead. (Hint: Use the function reshape to simplify the problem, e.g., to deal with vectors instead of matrices.)

Aufgabe 2.7. The integral $\int_{a}^{b} f d x$ of a continuous function $f:[a, b] \rightarrow \mathbb{R}$ can be approximated as a weighted sum of function values at specified points within the domain of integration by using a so-called quadrature formula of the form

$$
\int_{a}^{b} f d x \approx \sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right)
$$

Given a vector of quadrature points $x \in \mathbb{R}^{n}$ with $a \leq x_{1}<\cdots<x_{n} \leq b$, such a formula might be obtained by approximating the function f through a polynomial $p(x)=\sum_{j=1}^{n} a_{j} x^{j-1}$ of degree $\leq n-1$ which satisfies $p\left(x_{j}\right)=f\left(x_{j}\right)$ for all $j=1, \ldots, n$. Then, the weights ω_{j} can be derived from the condition

$$
\int_{a}^{b} q d x=\sum_{j=1}^{n} \omega_{j} q\left(x_{j}\right) \quad \text { for all polynomials } q \text { of degree } \leq n-1
$$

This is actually equivalent to the solution of the linear system

$$
\frac{b^{k+1}}{k+1}-\frac{a^{k+1}}{k+1}=\int_{a}^{b} x^{k} d x=\sum_{j=1}^{n} \omega_{j} x_{j}^{k} \quad \text { for all } k=0, \ldots, n-1 .
$$

Why? Write a MATLAB function integrate, which, given the column vector $x \in \mathbb{R}^{n}$ of quadrature points, returns the corresponding row vector $\omega \in \mathbb{R}^{n}$ of weights. To this end, build the linear system of equations in an efficient way and solve it by using the backslash operator. Avoid loops, and use only appropriate arithmetics and vector/matrix functions and indexing instead. (Remark: With the vector $\omega \in \mathbb{R}^{n}$, it is possible to compute the approximated integral by the matrix product with the $f(x)$-column vector.)

Aufgabe 2.8. Consider a lower triangular matrix $L \in \mathbb{R}^{n \times n}$ such that all the diagonal entries are non-zero, i.e., $\ell_{j j} \neq 0$ for all $j=1, \ldots, n$. Then, L has the form

$$
L=\left(\begin{array}{ccccc}
\ell_{11} & 0 & \cdots & \cdots & 0 \\
\ell_{21} & \ell_{22} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\ell_{n-1,1} & \ell_{n-1,2} & \cdots & \ell_{n-1, n-1} & 0 \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n, n-1} & \ell_{n n}
\end{array}\right)
$$

Since $\operatorname{det}(L)=\prod_{j=1}^{n} \ell_{j j} \neq 0, L$ is invertible, and the inverse might be recursively computed as follows: Write L in block form as

$$
L=\left(\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right)
$$

with $L_{1} 1 \in \mathbb{R}^{p \times p}, L_{21} \in \mathbb{R}^{q \times p}$ and $L_{22} \in \mathbb{R}^{q \times q}$, where $p+q=n$. Standard choices for p (and consequently q) are $p=n / 2$ for even n and $p=(n-1) / 2$ for odd n. Note that L_{11} and L_{22} are still invertible lower triangular matrices. Straightforward calculations show that the inverse has the following block form

$$
L^{-1}=\left(\begin{array}{cc}
L_{11}^{-1} & 0 \\
-L_{22}^{-1} L_{21} L_{11}^{-1} & L_{22}^{-1}
\end{array}\right) .
$$

Write a MATLAB function invertL, which, given an invertible lower triangular matrix $L \in$ $\mathbb{R}^{n \times n}$, computes the inverse L^{-1} according to the aforementioned recursive procedure. The correctness of the implementation can be checked by use of inv. Avoid loops, and use only appropriate arithmetics and vector/matrix functions and indexing instead. (Remark: The recursion goes down to $n=2$, where the inverse is explicitly given by the aforementioned formula.)

