
Winfried Auzinger Sommersemester 2014
Dirk Praetorius 12. März 2014
Michele Ruggeri

Übungen zur Vorlesung

Computermathematik

Serie 2

Aufgabe 2.1. Write a MATLAB function pnorm, which, given a vector x ∈ C
n and 1 ≤ p < ∞,

returns the ℓp-norm of x

‖x‖p :=
(

n
∑

j=1

|xj |
p
)1/p

.

Avoid loops, and use only arithmetics and appropriate vector/matrix functions and indexing
instead.

Aufgabe 2.2. Write a MATLAB function cut, which, given a vector x ∈ R
N and a constant

S ≥ 0, returns a vector y ∈ R
n, obtained from x by removing all the entries xj with |xj| > S,

e.g., x = (0, 2, 1, 4, 5, 0, 0, 1, 2) ∈ R
9 and S = 1 yield y = (0, 1, 0, 0, 1) ∈ R

5. Avoid loops, and
use only arithmetics and appropriate vector/matrix functions and indexing instead.

Aufgabe 2.3. Write a MATLAB function matrix, which, given n ∈ N, returns the matrix
A ∈ N

n×n with Ajk = j + k and the checkerboard matrix B ∈ N
n×n with

Bjk =

{

1 for j + k even,

0 for j + k odd.

Generate B from A exploiting mod. Avoid loops, and use only arithmetics and appropriate
vector/matrix functions and indexing instead.

Aufgabe 2.4. Any polynomial of degree n is uniquely determined by the n + 1 values of its
coefficients. Consider the polynomials p(x) =

∑m
j=0

ajx
j and q(x) =

∑n
k=0

bkx
k, as well as the

vectors of their respective coefficients a ∈ C
m+1 and b ∈ C

n+1. The sum p+ q is a polynomial of
degree max{m,n}. Write a MATLAB function addpol, which, given a ∈ C

m+1 and b ∈ C
n+1,

returns the coefficient vector c ∈ C
max{m,n} of (p+ q)(x) =

∑max{m,n}
ℓ=0

cℓx
ℓ. The function has to

work for both column and row input vectors a and b, but it always returns a column vector c.
To this end, the function reshape or the syntax vector(:) might be useful. Avoid loops and
if-conditions, and use only appropriate arithmetics and vector/matrix functions and indexing
instead.

Aufgabe 2.5. Write a MATLAB function diffpolwhich, given a polynomial p(x) =
∑n

j=0
ajx

j

defined through the coefficient vector a ∈ C
n+1, returns the coefficient vector of the first deriva-

tive p′. The function has to work for both column and row input vectors, but it always returns a
column vector. Avoid loops, and use only appropriate arithmetics and vector/matrix functions
and indexing instead.

Aufgabe 2.6. Write a MATLAB function evalpolwhich, given a polynomial p(x) =
∑n

j=0
ajx

j

defined through its coefficient vector a ∈ C
n+1, and a matrix x = (xjk) ∈ C

M×N of evaluation
points, returns the evaluation matrix

(

p(xjk)
)

∈ C
M×N . The function has to work for both co-

lumn and row input vectors. Do not forget that all the quantities are possibly complex-valued.
Avoid loops, and use only appropriate arithmetics and vector/matrix functions and indexing
instead. (Hint: Use the function reshape to simplify the problem, e.g., to deal with vectors
instead of matrices.)

Aufgabe 2.7. The integral
∫ b
a f dx of a continuous function f : [a, b] → R can be approximated

as a weighted sum of function values at specified points within the domain of integration by
using a so-called quadrature formula of the form

∫ b

a
f dx ≈

n
∑

j=1

ωjf(xj).

Given a vector of quadrature points x ∈ R
n with a ≤ x1 < · · · < xn ≤ b, such a formula

might be obtained by approximating the function f through a polynomial p(x) =
∑n

j=1
ajx

j−1

of degree ≤ n− 1 which satisfies p(xj) = f(xj) for all j = 1, . . . , n. Then, the weights ωj can be
derived from the condition

∫ b

a
q dx =

n
∑

j=1

ωjq(xj) for all polynomials q of degree ≤ n− 1.

This is actually equivalent to the solution of the linear system

bk+1

k + 1
−

ak+1

k + 1
=

∫ b

a
xk dx =

n
∑

j=1

ωjx
k
j for all k = 0, . . . , n− 1.

Why? Write a MATLAB function integrate, which, given the column vector x ∈ R
n of qua-

drature points, returns the corresponding row vector ω ∈ R
n of weights. To this end, build the

linear system of equations in an efficient way and solve it by using the backslash operator. Avoid
loops, and use only appropriate arithmetics and vector/matrix functions and indexing instead.
(Remark: With the vector ω ∈ R

n, it is possible to compute the approximated integral by the
matrix product with the f(x)-column vector.)

Aufgabe 2.8. Consider a lower triangular matrix L ∈ R
n×n such that all the diagonal entries

are non-zero, i.e., ℓjj 6= 0 for all j = 1, . . . , n. Then, L has the form

L =















ℓ11 0 · · · · · · 0
ℓ21 ℓ22 0 · · · 0
...

...
. . .

. . .
...

ℓn−1,1 ℓn−1,2 · · · ℓn−1,n−1 0
ℓn1 ℓn2 · · · ℓn,n−1 ℓnn















.

Since det(L) =
∏n

j=1
ℓjj 6= 0, L is invertible, and the inverse might be recursively computed as

follows: Write L in block form as

L =

(

L11 0
L21 L22

)

with L11 ∈ R
p×p, L21 ∈ R

q×p and L22 ∈ R
q×q, where p + q = n. Standard choices for p (and

consequently q) are p = n/2 for even n and p = (n− 1)/2 for odd n. Note that L11 and L22 are
still invertible lower triangular matrices. Straightforward calculations show that the inverse has
the following block form

L−1 =

(

L−1

11
0

−L−1

22
L21L

−1

11
L−1

22

)

.

Write a MATLAB function invertL, which, given an invertible lower triangular matrix L ∈
R
n×n, computes the inverse L−1 according to the aforementioned recursive procedure. The cor-

rectness of the implementation can be checked by use of inv. Avoid loops, and use only appro-
priate arithmetics and vector/matrix functions and indexing instead. (Remark: The recursion
goes down to n = 2, where the inverse is explicitly given by the aforementioned formula.)

