Winfried Auzinger Sommersemester 2014
Dirk Praetorius 12. Marz 2014
Michele Ruggeri

Ubungen zur Vorlesung
Computermathematik

Serie 2

Aufgabe 2.1. Write a MATLAB function pnorm, which, given a vector x € C" and 1 < p < oo,
returns the /P-norm of x

follp o= (3 ki)
j=1

Avoid loops, and use only arithmetics and appropriate vector/matrix functions and indexing
instead.

Aufgabe 2.2. Write a MATLAB function cut, which, given a vector 2 € RV and a constant
S > 0, returns a vector y € R", obtained from x by removing all the entries z; with |z;| > S,
e.g., z = (0,2,1,4,5,0,0,1,2) € RY and S = 1 yield y = (0,1,0,0,1) € R5. Avoid loops, and
use only arithmetics and appropriate vector/matrix functions and indexing instead.

Aufgabe 2.3. Write a MATLAB function matrix, which, given n € N, returns the matrix
A € N™*" with Aj, = j + k and the checkerboard matrix B € N"*" with

1 for j + k even,
710 for j 4k odd.

Generate B from A exploiting mod. Avoid loops, and use only arithmetics and appropriate
vector/matrix functions and indexing instead.

Aufgabe 2.4. Any polynomial of degree n is uniquely determined by the n + 1 values of its
coefficients. Consider the polynomials p(z) = >, a;z? and q(z) = S_p_, bra®, as well as the
vectors of their respective coefficients a € C"™*! and b € C"*!. The sum p+ ¢ is a polynomial of
degree max{m,n}. Write a MATLAB function addpol, which, given a € C™*! and b € C"*!,
returns the coefficient vector ¢ € C™*{mn} of (p+¢)(z) = E’jg‘{m’"} cex’. The function has to
work for both column and row input vectors a and b, but it always returns a column vector c.
To this end, the function reshape or the syntax vector(:) might be useful. Avoid loops and
if-conditions, and use only appropriate arithmetics and vector/matrix functions and indexing
instead.

Aufgabe 2.5. Write a MATLAB function diffpol which, given a polynomial p(z) = Z?:o ajx’!
defined through the coefficient vector a € C"*!, returns the coefficient vector of the first deriva-
tive p’. The function has to work for both column and row input vectors, but it always returns a
column vector. Avoid loops, and use only appropriate arithmetics and vector/matrix functions
and indexing instead.

Aufgabe 2.6. Write a MATLAB function evalpol which, given a polynomial p(z) = >>7_ ajx’!
defined through its coefficient vector a € C"*1, and a matrix z = (xjk) € CM*N of evaluation
points, returns the evaluation matrix (p(azjk)) e CM*N_ The function has to work for both co-
lumn and row input vectors. Do not forget that all the quantities are possibly complex-valued.
Avoid loops, and use only appropriate arithmetics and vector/matrix functions and indexing
instead. (Hint: Use the function reshape to simplify the problem, e.g., to deal with vectors
instead of matrices.)

Aufgabe 2.7. The integral f; f dx of a continuous function f : [a,b] — R can be approximated
as a weighted sum of function values at specified points within the domain of integration by
using a so-called quadrature formula of the form

b n
/ fda;%ijf(xj).
a =1

Given a vector of quadrature points x € R"™ with a < z; < --- < z, < b, such a formula
might be obtained by approximating the function f through a polynomial p(z) = Z?:l ajxi=t
of degree < n —1 which satisfies p(z;) = f(z;) for all j = 1,...,n. Then, the weights w; can be
derived from the condition
b n
/ qdx = Z w;q(z;) for all polynomials ¢ of degree <n — 1.
a =1

This is actually equivalent to the solution of the linear system

bk-i-l ak-i—l /b L n
— = xdazzg wjxé‘? forall k=0,...,n—1.
k+1 k+1 “ st

Why? Write a MATLAB function integrate, which, given the column vector z € R" of qua-
drature points, returns the corresponding row vector w € R™ of weights. To this end, build the
linear system of equations in an efficient way and solve it by using the backslash operator. Avoid
loops, and use only appropriate arithmetics and vector /matrix functions and indexing instead.
(Remark: With the vector w € R™, it is possible to compute the approximated integral by the
matrix product with the f(z)-column vector.)

Aufgabe 2.8. Consider a lower triangular matrix L € R™*™ such that all the diagonal entries

are non-zero, i.e., £;; # 0 for all j =1,...,n. Then, L has the form
0 0 . - 0
f91 {99 0 s 0
L — . : .
lbp11 ln—12 -+ lp_ip—1 O
enl €n2 to en,n—l enn

Since det(L) = H;‘L:1 Lj; # 0, L is invertible, and the inverse might be recursively computed as
follows: Write L in block form as

L1 O
L =
<L21 L22>

with L11 € RP*P| [o; € R?*P and L9s € R?*? where p + ¢ = n. Standard choices for p (and
consequently ¢) are p = n/2 for even n and p = (n —1)/2 for odd n. Note that Li; and Lo are
still invertible lower triangular matrices. Straightforward calculations show that the inverse has
the following block form

L™ = —1 -1 -1
—Lgy LarLyy Loy
Write a MATLAB function invertL, which, given an invertible lower triangular matrix L €
R™ " computes the inverse L~! according to the aforementioned recursive procedure. The cor-
rectness of the implementation can be checked by use of inv. Avoid loops, and use only appro-

priate arithmetics and vector/matrix functions and indexing instead. (Remark: The recursion
goes down to n = 2, where the inverse is explicitly given by the aforementioned formula.)

