
Winfried Auzinger Sommersemester 2014
Dirk Praetorius 19. März 2014
Michele Ruggeri

Übungen zur Vorlesung

Computermathematik

Serie 3

Aufgabe 3.1. Aitken’s ∆2-process is a series acceleration method, used for improving the rate
of convergence of a sequence. Given an injective sequence (xn) such that the limit x = limn→∞ xn
exists, consider the sequence (yn) defined by

yn := xn −
(xn+1 − xn)

2

xn+2 − 2xn+1 + xn
for all n ≥ 0. (1)

Under certain assumptions on the sequence (xn), it holds

lim
n→∞

x− yn

x− xn
= 0,

i.e., (yn) converges towards x and the convergence is faster than that of (xn). Write a MATLAB
function aitken, which, given a vector x ∈ R

N , returns the corresponding Aitken vector y ∈
R
N−2. Use appropriate loops.

Aufgabe 3.2. Write a MATLAB function aitken vec, which, given a vector x ∈ R
N , re-

turns the corresponding Aitken vector y ∈ R
N−2 from Aufgabe 3.1. Avoid loops, and use only

appropriate vector/matrix functions and arithmetics instead.

Aufgabe 3.3. Extend the code of slide 78 by adding the ∆2-method from Aufgabe 3.1 (or Auf-
gabe 3.2) to improve the convergence behavior of the central and forward difference quotients.
Which are the observed convergence rates? Visualize them appropriately.

Aufgabe 3.4. Write a MATLAB function diffaitken, which computes the approximation
of the derivative of a function f in a point x through the central difference quotient

Φ(h) =
f(x+ h)− f(x− h)

2h
.

Given the function f , the point x, an initial parameter h0 > 0 and a tolerance τ > 0, the
function returns an approximation of the derivative obtained as follows: For n ≥ 1, compute
hn := 2−(n−1)h0, xn := Φ(hn), and φn defined by

φn :=

{

xn if n = 1, 2,

yn−2 if n ≥ 3,

where, for n ≥ 3, we apply the ∆2-method from Aufgabe 3.1–3.2 (define yn−2 through (1)). The
iteration stops when n ≥ 2 and

|φn − φn−1| ≤

{

τ if |φn| ≤ τ,

τ |φn| else,

and the function returns φn as approximation of the derivative.

Aufgabe 3.5. One possible algorithm for eigenvalue computations is the Power Iteration.
It approximates (under certain assumptions) the eigenvalue λ ∈ R with the greatest absolute
value of a symmetric matrix A ∈ R

n×n as well as the corresponding eigenvector x ∈ R
n. The

algorithm is obtained as follows: Given a vector x(0) ∈ R
n\{0}, e.g., x(0) = (1, . . . , 1) ∈ R

n,
define the sequences

x(k) :=
Ax(k−1)

‖Ax(k−1)‖2
and λk := x(k) ·Ax(k) :=

n
∑

j=1

x
(k)
j (Ax(k))j for k ∈ N,

where ‖y‖2 :=
(
∑n

j=1 y
2
j

)1/2
denotes the Euclidean norm. Then, under certain assumptions,

(λk) converges towards λ, and (x(k)) converges towards an eigenvector associated to λ (in an
appropriate sense). Write a MATLAB function poweriteration, which, given a matrix A, a
tolerance τ and an initial vector x(0), verifies whether the matrix A is symmetric. If this is not
the case, then the function displays an error message and terminates (use error). Otherwise, it
computes (λk) and (x(k)) until

‖Ax(k) − λkx
(k)‖2 ≤ τ and |λk−1 − λk| ≤

{

τ if |λk| ≤ τ,

τ |λk| else,

and returns λk and x(k). Realize the function in an efficient way, i.e., avoid unnecessary computa-
tions (especially of matrix-vector products) and storage of data. Then, compare poweriteration
with the built-in MATLAB function eig. Use the function norm, as well as arithmetics.

Aufgabe 3.6. Let U ∈ C
n×n be an upper triangular matrix, i.e., ujk = 0 for j > k, such that

ujj 6= 0 for all j = 1, . . . , n. Given b ∈ C
n, there exists a unique solution x ∈ C

n of Ux = b

(Why?). Write a MATLAB function solveU, which, given an upper triangular matrix U as
above and a vector b ∈ C

n, computes the unique solution x ∈ C
n of Ux = b. Use only loops

(but try to avoid them by suitable vector/matrix computations) and arithmetics. You must not
use the MATLAB backslash operator to solve the linear system, but you can use it to test your
implementation.

Aufgabe 3.7. Write a MATLAB function mergesort and an auxiliary function merge (inclu-
ded in the file mergesort.m) with the following features:
• Given two row vectors with entries sorted into ascending order a ∈ R

m and b ∈ R
n, the

function merge merges them (through a suitable loop) to obtain a row vector c ∈ R
m+n sor-

ted into ascending order, e.g., for a = (1, 3, 3, 4, 7) and b = (1, 2, 3, 8) the function returns
c = (1, 1, 2, 3, 3, 3, 4, 7, 8). The function exploits the fact that the vectors a and b are already
sorted, and therefore must not include any sorting algorithm (or the MATLAB function sort).
• Given a row vector c ∈ R

N , the recursive function mergesort returns it sorted into ascending
order. The algorithm should be implemented as follows: If N ≤ 2, then c is manually sorted. If
N > 2, c is halved into two parts, a and b, which are recursively sorted by calling mergesort

to sort a and b, and merge to merge the sorted vectors a and b to build the sorted vector c.

Aufgabe 3.8. Write a MATLAB script, which visualizes the runtime of mergesort for random
vectors x ∈ R

N and N = 100 · 2n with n = 0, 1, 2, Devise suitable plots to visualize the
computational cost of your implementation. What is your expectation for a vector of length
2N?

