# Übungen zur Vorlesung <br> <br> Computermathematik 

 <br> <br> Computermathematik}

## Serie 4

Aufgabe 4.1. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. For $N \in \mathbb{N}$ and $x_{j}:=a+j(b-a) / N$ with $j=0, \ldots, N$, we define the composite midpoint rule

$$
\begin{equation*}
I_{N}:=\frac{b-a}{N} \sum_{j=1}^{N} f\left(\left(x_{j-1}+x_{j}\right) / 2\right) \tag{1}
\end{equation*}
$$

Since $I_{N}$ is a Riemann sum, we know that

$$
\lim _{N \rightarrow \infty} I_{N}=\int_{a}^{b} f d x
$$

For $f \in C^{2}[a, b]$, one can even show that

$$
\left|\int_{a}^{b} f d x-I_{N}\right|=\mathcal{O}\left(N^{-2}\right)
$$

Write a MATLAB function

```
int = midpointrule(a,b,f,n)
```

which, for the sequence $N=2^{k}$ and $k=0, \ldots, n$, computes and returns the vector int of the corresponding values $I_{N}$.

Aufgabe 4.2. Consider the integral $I:=\int_{0}^{5} \exp (x) d x$. Use the composite midpoint rule from Aufgabe 4.1 to compute the sequence of approximate integrals $I_{N}$. Use a double logarithmic plot to show the error $E_{N}=\left|I-I_{N}\right|$ as well as the error estimator $\delta_{N}=\left|I_{2 N}-I_{N}\right|$. Verify the convergence behavior $\mathcal{O}\left(N^{-2}\right)$. What convergence behavior do you observe, if you use Aitken's $\Delta^{2}$-method? What convergence behavior do you observe if you replace the evaluation $f\left(\left(x_{j-1}+\right.\right.$ $\left.\left.x_{j}\right) / 2\right)$ at the midpoint by the evaluation $f\left(x_{j-1}\right)$ ?

Aufgabe 4.3. The following code computes a sparse matrix $A \in \mathbb{R}^{N \times N}$ (You can download the code from the CompMath webpage).

```
function A = matrix(N)
x = rand(1,N);
y = rand(1,N);
triangles = delaunay(x,y);
n = size(triangles,1);
```

```
A = sparse(N,N);
for i = 1:n
    nodes = triangles(i,:);
    B = [1 1 1 1 ; x(nodes) ; y(nodes)];
    grad = B \ [0 0 ; 1 0 ; 0 1];
    A(nodes,nodes) = A(nodes,nodes) + det(B)*grad*grad'/2;
end
```

Plot the computational time $t(N)$ over $N$ and visualize the growth $t(N)=\mathcal{O}\left(N^{\alpha}\right)$ for $N=$ $100 \cdot 2^{k}$ and $k=0,1,2, \ldots$. What is the bottleneck of this implementation? What can be done to improve the runtime behavior? Write an improved code which leads to a better computational time. Visualize its runtime in the same plot to show that the improved code is really superior. Hint: You might want to have a look at help sparse.

Aufgabe 4.4. Let $m, n, N \in \mathbb{N}$. Let $I, J, a \in \mathbb{R}^{N}$ represent the coordinate format of a sparse matrix $A \in \mathbb{R}^{m \times n}$, i.e., for all $k=1, \ldots, N$ holds $A_{i j}=a_{k}$ with $i=I_{k}, j=J_{k}$. Write a MATLAB function
[II, JJ, AA] = naive2ccs(I, J,a,m,n)
which returns the corresponding vectors of the CCS format.

Aufgabe 4.5. Given the vectors of the CCS format of a sparse matrix $A \in \mathbb{R}^{m \times n}$ from the last exercise, write a MATLAB function

$$
A x=\operatorname{mvm}(I I, J J, A A, m, n, x)
$$

which computes the matrix-vector multiplication $b=A x \in \mathbb{R}^{m}$ for given $x \in \mathbb{R}^{n}$. The complexity of the code must be $\mathcal{O}(N)$. Hint: You can verify your code as follows: Suppose that $A$ is a sparse matrix (e.g., the triadiagonal matrix from page 96 of the lecture notes). Then, the coordinate format of $A$ is obtained by $[\mathrm{I}, \mathrm{J}, \mathrm{a}]=\mathrm{find}(\mathrm{A})$ in MATLAB. Use your code from Aufgabe 4.4 to compute the vectors of the CCS format and compare the outcome of your function mvm with the matrix-vector multiplication $A * x$ in MATLAB.

Aufgabe 4.6. Write a function plotPotential, which takes a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, a domain $[a, b]^{2}$ and a step size $\tau>0$, and plots the projection of $f(x, y)$ onto the 2D plane (i.e., view (2)). Add a colorbar to the plot. For the visualization, use a tensor grid with step size $\tau$. You may assume, that the actual implementation of $f$ takes matrices $x, y \in \mathbb{R}^{M \times N}$ and returns a matrix $z \in \mathbb{R}^{M \times N}$ of the corresponding function values, i.e., $z_{j k}=f\left(x_{j k}, y_{j k}\right)$. Optionally, the function plotPotential takes a parameter $n \in \mathbb{N}$. For given $n$, add $n$ (black or white) contour lines to the figure. To verify your code, write a MATLAB script which visualizes the potential $f(x, y)=x \cdot \exp \left(-x^{2}-y^{2}\right)$ from the lecture notes.

Aufgabe 4.7. Write a MATLAB function saveMatrix which takes a matrix $A \in \mathbb{R}^{M \times N}$ and writes it into an ASCII file matrix.dat via fprintf (see also help fopen). Use \%1.16e for fprintf to write the matrix coefficients! (Why does this make sense?) Optionally, the function takes a string name and writes the matrix to the ASCII file name.dat. To verify your code, write a MATLAB script which creates a random matrix $A \in \mathbb{R}^{M \times N}$ and writes it to an ASCII file A.dat. Load the matrix via $\mathrm{B}=\operatorname{load}($ ' A. dat') and check whether $A$ and $B$ coincide.

Aufgabe 4.8. Suppose you are given a C function with signature

```
double f(double x, double y);
```

Write a MEX-MATLAB function fct which which takes matrices $X, Y \in \mathbb{R}^{M \times N}$

$$
Z=f c t(X, Y)
$$

and returns the matrix $Z \in \mathbb{R}^{M \times N}$ with $Z_{j k}=f\left(X_{j k}, Y_{j k}\right)$. The MEX function should check whether the dimensions of $X$ and $Y$ coincide, and should throw an error if they do not. To check your implementation, implement the function $f(x, y)=x \cdot \exp \left(-x^{2}-y^{2}\right)$ in C and reproduce some of the plots of the last lecture.

