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Übungsaufgaben zur VU Computermathematik

Serie 6

Einige Themen,wie z.B. plot-Befehle und einige weitere Befehle (z.B. coeff, collect, unapply etc.)
wurden in der VO noch nicht genauer besprochen. Dafür werden jeweils Hinweise gegeben. Konsultieren
Sie für genauere Details die Maple-Hilfe!

In den folgenden Aufgaben lässt sich das meiste durch ‘Einzeiler’ mittels impliziter Schleifen ausdrücken,
unter Verwendung von seq(...), add(...), etc. Sie können aber auch Steuerkonstrukte verwenden, and
statt Funktionen können es auch Prozeduren (proc) sein.

Exercise 6.1.

a) Use the command 1 plots[listplot] to plot the points 2 (xn, yn) =
(
n, Sn− ln(n)

)
in the (x, y)-plane,

where the Sn are harmonic sums, Sn =
n∑
j=1

1
j
.

What do you observe for larger values of n?

b) Perform an experiment to find N ∈ N such that for n ≥ N the relative error (Sn − lnn)/Sn is below
10 %. What about 1 % accuracy?

(Motivation: Approximation of the harmonic sum Sn by a simple function.)

c) The limit lim
n→∞

(
Sn − lnn

)
is called the Euler-Mascheroni constant, γ ≈ 0.5772156649. Perform an

experiment to find N ∈ N such that for n ≥ N the relative error
(
Sn − (lnn+ γ)

)
/Sn is below 1 h.

(In Maple, the constant gamma is predefined, and you can evaluate it using evalf.)

d) Determine experimentally the constant p > 0 such that Sn − (lnn+ γ) ∼ n−p for n→∞.

Exercise 6.2.

a) Use plots[pointplot] to draw a regular polygon with n vertices (e.g., an equal-sided triangle for
n = 3, a square for n = 4). Pack your plot command into a function draw polygon(n,...) which also
expects more parameters, e.g., for the color or line thickness of the plot (these are passed as options
to pointplot). Make use of some of these parameters to produce a nice-looking plot.

b) Use plots[pointplot3d] to draw a cube (similar procedure as in a)).

Exercise 6.3. Let A,B,C be lists of length 2 representing Cartesian coordinates of 3 points in the plane.
A (homogeneous) barycentric representation of the triangle ABC has the form

P (α, β, γ) = αA+ β B + γ C, α + β + γ = 1,

with α ≥ 0, β ≥ 0, and γ ≥ 0.

1 Syntax: plots[listplot](...) activates the function listplot contained in the package plots. You can also activate
the complete package using with(plots); and simply call listplot.

2 Evaluating the sum again and again is not efficient for larger values of n. In practice one would use a for loop for
summing up.



a) Design a function cctobc(A,B,C,x,y) which converts Cartesian coordinates of a point (x, y) in the
plane into barycentric coordinates α, β, γ with respect to A,B,C, satisfying α + β + γ = 1. (The
point (x, y) may also lie outside the triangle; in this case α, β or γ is negative.) Note that this is not
well-defined if A,B,C are located on a common line.

Hint: This amounts to solving a system of two linear equations. You may derive the resulting formula
by hand, or use Maple, in particular solve.

b) Design a function bctocc(A,B,C,alpha,beta,gamma) which returns the Cartesian coordinates of the
point P (α, β, γ).

c) Choose A,B,C and use several calls of pointplot in the following way: 3

p[1] := pointplot(...): # draws the line AB

p[2] := pointplot(...): # draws the line BC

p[3] := pointplot(...): # draws the line CA

...

p[n] := pointplot(...):

and use plots[display] to render all these plots together. These plots should also include the points
P (1, 0, 0) = A, P (0, 1, 0) = B, P (0, 0, 1) = C, and P (1

3
, 1
3
, 1
3
), P (0, 1

2
, 1
2
), P (1

2
, 0, 1

2
), P (1

2
, 1
2
, 0). Produce

a nice-looking plot.

Remark. The variable gamma is predefined and protected (see 6.1). If you want to use the name gamma for
one of your variables, use unprotect(gamma).

Exercise 6.4. Another representation of a triangle uses non-homogeneous barycentric coordinates,

P = P (λ, µ) = A+ λ (B − A) + µ (C − A), λ+ µ ≤ 1,

with λ, µ ∈ [0, 1]. The mapping (λ, µ) 7→ P (λ, µ) maps the unit triangle (0, 0), (1, 0), (0, 1) to ABC.

a) Design two functions mapping Cartesian coordinates (x, y) into (λ, µ) and vice versa.

b) Design two functions mapping (λ, µ) coordinates into (α, β, γ) coordinates (see 6.3) and vice versa.

c) Design a function isintrinagle(A,B,C,x,y) which, for a point P with Cartesian coordinates (x, y) ,
returns true if P is contained in the triangle ABC and false otherwise.

Exercise 6.5. Let n ∈ N and consider the points tj := j/(n+ 1), j = 1 . . . n. Then, ∆ := (t1, t2, . . . , tn)
is a sequence of equispaced grid points in the interval [0, 1]. The functions sk : ∆→ R, k = 1 . . . n, defined
by

sk(tj) = sin(k π tj), j = 1 . . . n,

are discrete sine functions of varying frequency.

Let x : ∆ → R some function defined on ∆, and denote 4 xj := x(tj), j = 1 . . . n. The discrete sine
transform (DST) of x is defined as the vector of ‘Fourier coefficients’ x̂ = (x̂1, . . . , x̂n) ∈ Rn,

x̂k =
n∑
j=1

xj sin(k π tj), k = 1 . . . n . (1)

3 Each call generates a plot structure representing the data for the plot.
4 Think of a function which takes the value 0 for t0 = 0 and tn+1 = 1. The sk(tj) also have this property.



The x̂k are exactly the coefficients of a representation of x in the form

x = 2
n+1

n∑
k=1

x̂k sk ,

i.e.,

xj = 2
n+1

n∑
k=1

x̂k sin(k π tj), j = 1 . . . n . (2)

This means that x is decomposed into its discrete frequencies. (2) is called the inverse discrete sine
transform (IDST); it is the same as the DST (1) up to the scaling factor 2

n+1
.

a) Use pointplot and display to plot the sk(tj), k = 1 . . . n, for given n, e.g., n = 16. (Cf. 6.3 c).)

b) Design two functions [i]dst(y) which compute the [I]DST of y (we represent y = x or y = x̂ by a
list). ‘Verify’ by examples that, indeed, idst(dst(x))=x and vice versa. Use pointplot to visualize
the behavior of the x̂k in dependence of k.

(Natural choice for x: xj = f(tj) for some given function f(t) satisfying f(0) = f(1) = 0.)

c) ‘Verify’ by examples that the rescaled DST (= rescaled IDST)

y := dst*(x) =
(√

2
n+1

n∑
j=1

xj sin(k π tj), k = 1 . . . n
)

is an isometric operation, i.e.,
n∑
k=1

y2k =
n∑
k=1

x2k.

Exercise 6.6. Assume you want to compute (approximate) the derivative of a given function f(x)
evaluated at a point x ∈ R. It is assumed that f is not given explicitly as a formula but only as a (‘black
box’) function f. For approximation of f ′(x), consider the one-sided and central difference quotients

δ
(1)
h f(x) :=

f(x+ h)− f(x)

h
, δ

(2)
h f(x) :=

f(x+ h)− f(x− h)

2h
,

with a (small) increment h.

a) Design two functions delta1(f,x,h) and delta2(f,x,h) which implement evaluation of these diffe-
rence quotients. Use evalf.

b) Choose a function f with known derivative, choose a point x and let h = 1, 1
2
, 1
4
, 1
8
, . . .. Evaluate the

difference quotients and observe the speed of convergence to the true value f ′(x) in both cases. (Look
at the error of the both approximations in dependence of h.)

c) Set Digits:=10 (10 decimal digits floating point accuracy), and let ‘h → 0’, i.e., choose a very small
increment h, h ≈ 10−Digits and even smaller. What do you observe?

Exercise 6.7. The Bernstein polynomials of degree n are defined as

Bk,n(t) :=

(
n

k

)
tk (1− t)n−k , k = 0 . . . n.

a) Design a function B(k,n,t) implementing the Bernstein polynomials of degree n.



b) Use plot and display to plot the Bk,n(t) together for some n.

c) Design a function Bapprox(f,n,t) which, for a given function f to be approximated, returns the
Bernstein-type approximation 5 of f of degree n,

Bn(f)(t) :=
n∑
k=0

Bk,n(t) f( k
n
)

in form of a function, using the functions B(k,n,t) from c).

d) Use plot and display to plot f(t) and Bn(f)(t) for some n together. Use two different colors for these
curves.

Exercise 6.8.

a) Design a function polcoe(p,z) which expects a polynomial expression in the variable z as arguments
and returns the list of coefficients 6 [c0, c1, . . . , cn].

Hint: Use degree and coeff.

b) Design a function for the reverse operation.

c) Consider the polynomial Bn(f)(t) produced in 6.7 c) for some chosen function f(t). Check what result
a call of Bapprox(f,n,t) produces for given n. You can optimize this for further use in the following
way: Use collect and evalf to convert the expression Bn(f)(t) into a polynomial expression of the

form
n∑
k=0

ck t
k with floating point numbers ck. Assign this expression to a variable, say B, and then use

the command

Bf := unapply(B,t);

(or whatever your name you choose instead of Bf) to convert the expression B into a function Bf of the
variable t.

5 It can be shown that for a function f continuous on [0, 1], the sequence {Bn(f)} converges uniformly to f for n → ∞,
i.e., lim

n→∞
max
t∈[0,1]

|Bn(f)(t)− f(t)| = 0 .

6 Remark: In Matlab, a polynomial p(z) =
n∑

k=0

ckz
k is represented by its coefficient vector (c0, c1, . . . , cn).


