Übungsaufgaben zur VU Computermathematik
 Serie 8

In all examples we use the package LinearAlgebra.

Exercise 8.1. We design a procedure for computing the orthogonal projection onto a linear subspace $\mathcal{U} \subseteq \mathbb{R}^{n}$. Let $m<n$ linearly independent vectors $\left(u_{1}, \ldots, u_{m}\right)$ be given. We apply GramSchmidt to compute an orthonormal basis $\left(q_{1}, \ldots, q_{m}\right)$ which spans the same linear space \mathcal{U} as $\left(u_{1}, \ldots, u_{m}\right)$.
Then, the orthogonal projection of $x \in \mathbb{R}^{n}$ onto \mathcal{U} is given by

$$
P x=\sum_{j=1}^{m}\left(x \cdot q_{j}\right) q_{j}
$$

where $x \cdot y=x^{T} y=y^{T} x$.
The following makes only sense in floating point:
a) Design a procedure mgs($\mathrm{U}:$:matrix) which expects a matrix U as its argument and which calls GramSchmidt to orthonormalize the columns of U. The procedure returns a matrix Q with the corresponding orthonormal columns.
b) Design a procedure orthoproj(x::Vector, $\mathrm{Q}::\{$ Vector, Matrix\}) which expects a vector x and a matrix Q (according to a$)$) or a single vector ${ }^{1} \mathrm{Q}$ as its arguments and returns the orthogonal projection $P x$. If dimensions are incompatible, stop with an error message.

Remark on the mathematical background: The projection $P x$ is the best approximation of x within \mathcal{U}, i.e., $\|u-x\|_{2}$ becomes minimal for $u=P x$. A matrix representation of the projector is given by $P=Q Q^{T}$ satisfying $P P=P$ (projector property) and $P=P^{T}$ (this characterizes orthogonal projectors). Can you verify the latter properties? You may also 'verify' them experimentally.

Exercise 8.2. Let \mathcal{U} be a linear subspace of \mathbb{R}^{3} of dimension 2 (i.e., a plane containing 0). We wish to determine the matrix representation of the projector P which projects $x \in \mathbb{R}^{3}$ onto \mathcal{U} in direction of a given vector $0 \neq w \notin \mathcal{U}$. P is uniquely determined by the requirements (make a sketch)

$$
P u=u, \quad P v=v, \quad P w=0
$$

where $u, v \in \mathcal{U}$ are any linearly independent vectors spanning \mathcal{U}.
Design a procedure

```
screw_projector(u::Vector,v::Vector,w::Vector)
```

which returns the matrix P in form of an object of type Matrix. Use LinearSolve to solve the corresponding matrix equation. What happens if $w \in \mathcal{U}$ or if u, v are linearly dependent?
Remark: If $w \perp \mathcal{U}$, then the outcome is the orthogonal projector onto \mathcal{U}.

[^0]Exercise 8.3. Let $U \in \mathbb{R}^{n \times m}$ and $Q \in \mathbb{R}^{n \times n}$ be matrices in the sense of 8.1, with $n>m$. The function QRDecomposition also converts U into Q : It returns the matrix Q together with a matrix $R \in \mathbb{R}^{m \times m}$ such that ${ }^{2} U=Q R$, with R upper triangular.
a) Consider the problem of finding $x \in \mathbb{R}^{m}$ such that the residual norm $\|U x-b\|_{2}$ becomes minimal for given $U \in \mathbb{R}^{n \times m}$ and $b \in \mathbb{R}^{n}$. The solution x can be obtained by solving the normal equations

$$
U^{T}(U x)=U^{T} b
$$

which, due to $Q^{T} Q=I$, is equivalent to

$$
R^{T}(R x)=R^{T}\left(Q^{T} b\right)
$$

Design a procedure leastsquares (U, b) which returns the solution x. Use QRDecomposition and LinearSolve, without explicitly computing $R^{T} R$ or $R^{T} Q$, which would be inefficient.
b) Solve a simple problem for some matrix $U \in \mathbb{R}^{3 \times 2}$ and some vector $b \in \mathbb{R}^{3}$. Compare your results with the outcome of LeastSquares, which does the same job.

Exercise 8.4. A differentiable vector field $S: \mathbb{R}^{2} \supseteq G \rightarrow \mathbb{R}^{3}$ defines a parametrization of a smooth surface $\mathcal{S} \subseteq \mathbb{R}^{3}$. The points on the surface are given by $(x, y, z)=S(u, v)=\left(S_{1}(u, v), S_{2}(u, v), S_{3}(u, v)\right)$ with $(u, v) \in G$.
Let $G=[a, b] \times[c, d]$ be a rectangle in (u, v) - plane. Then, the area of the surface is given by the double integral

$$
\int_{\mathcal{S}} d \sigma:=\int_{v=c}^{d} \int_{u=a}^{b} \sqrt{\mu(u, v)} d u d v, \quad \text { with } \quad \mu(u, v):=\operatorname{det}\left(\begin{array}{ll}
\frac{\partial S}{\partial u} \cdot \frac{\partial S}{\partial u} & \frac{\partial S}{\partial u} \cdot \frac{\partial S}{\partial v} \\
\frac{\partial S}{\partial u} \cdot \frac{\partial S}{\partial v} & \frac{\partial S}{\partial v} \cdot \frac{\partial S}{\partial v}
\end{array}\right) \text {. }
$$

Here,

$$
\frac{\partial S}{\partial u}=\left(\begin{array}{c}
\frac{\partial S_{1}}{\partial u} \\
\frac{\partial S_{2}}{\partial u} \\
\frac{\partial S_{3}}{\partial u}
\end{array}\right)
$$

(analogously for v), and • is the dot product ($=$ Euclidean inner product).
Use this formula in Maple to compute the area of a section of a hyperboloid in \mathbb{R}^{3}, given by

$$
S(x, y)=\left(\begin{array}{c}
x \\
y \\
x y
\end{array}\right), \quad(x, y) \in[-1,1] \times[-1,1]
$$

This means that the hyperboloid is parametrized by the Cartesian coordinates in the (x, y)-plane, i.e., it is simply represented as the graph of the function $z(x, y)=x y$, and x, y play the role of u, v. (You may use plot3d to visualize this surface.)
This integral is nontrivial. Use evalf to find: area ≈ 5.123.
Exercise 8.5. Let a family of linear mappings $\psi=\psi_{m, n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be given, where $m, n \in \mathbb{N}$ is arbitrary, and where these mappings share a common definition, e.g.,

$$
(\psi(x))_{k}:=\sum_{j=1}^{n} \frac{j}{k} x_{j}, \quad k=1 \ldots m
$$

or whatever you may choose for testing.

[^1]a) Design a procedure psi(x::Vector,m::posint) which expects an object x of type Vector and a positive integer m as its arguments and returns the value $\psi(x)$ in form of a Vector of dimension m .

Remark: n is determined from Dimension(x). The syntax

```
psi := proc(x::Vector,m::posint)
```

means that the arguments passed to the procedure must have the corresponding types, otherwise the procedure will exit with an error message (try out).
b) Design a procedure psimatrix(psi::procedure,m::posint,n::posint) which returns the corresponding $m \times n$ coefficient matrix of the mapping $\psi_{m, n}$ as an object of type Matrix. Check that a call of psi gives the same result as the corresponding matrix-vector multiplication.

Exercise 8.6. An $n \times n$ matrix $H=\left(h_{i, j}\right)$ is called upper Hessenberg if $h_{i, j}=0$ for $j<i-1$.
a) Design a recursive procedure which computes the determinant of an upper Hessenberg matrix: ${ }^{3}$ By expanding the determinant along the first column (Laplace expansion theorem), evaluation of the determinant for dimension n is reduced to 2 evaluations of the determinants of submatrices of dimension $n-1$ which are also upper Hessenberg. (Make a sketch.)
Choose an example and compare with Determinant (. . .). Also use time () to observe computing times for $n=10,20,30$. What do you observe? Explain the effect. How many recursive calls are performed?
Hint: For extracting a submatrix you may use vector index notation using index lists. For instance, $H[[1,3 \ldots n],[2 \ldots n]]$ removes the second row and the first column. This can also be written as H[[1, 3..n], 2..n].
b) The algorithm from a) is a nice exercise but it is stupid. Write another one: Let $H_{k}=\mathrm{H}[\mathrm{k}, \ldots]$ denote the k-th row of H.

- Replace H_{2} by a linear combination of H_{1} and H_{2} such that the new H_{2} satisfies $H_{2,1}=0$, i.e., set $H[2, \ldots]:=H[2, \ldots]+\alpha H[1, \ldots]$ with the appropriate value for α.
- Replace H_{3} by a linear combination of (the new) H_{2} and H_{3} such that the new H_{3} satisfies $H_{3,2}=0$.
- ... (As you know, the determinant is invariant under these operations.)
- After $n-1$ steps, return the determinant of the resulting modified matrix H.

You may assume that no division by zero occurs; otherwise the algorithm would have to be modified. But insert an error branch which monitors this case. Repeat the tests from a).

Exercise 8.7.

a) With plots [arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping $\psi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ represented by a coefficient matrix A, by drawing the parallelepiped spanned by the image of the unit vectors $(1,0,0),(0,1,0)$ and $(0,0,1)$ under the mapping. Produce a nice plot.

[^2]b) Another visualization is provided by the image of the unit sphere under the mapping. To this end, use spherical coordinates
\[

$$
\begin{aligned}
& x=\cos \theta \cos \varphi, \\
& y=\cos \theta \sin \varphi, \\
& z=\sin \theta,
\end{aligned}
$$
\]

with $\varphi \in[0,2 \pi]$ and $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and use the plot3d syntax for parametric surfaces. (See ? plot3d, 'Plotting a parametric surface'.)

Produce a nice plot. Also use display [3d] to combine this with a plot of the unit sphere. Use different colors and set the option transparency=0.5.

Hint: With convert(..., list) you can convert a Vector into a list.

Exercise 8.8. For a square matrix A, the matrix exponential is defined as the convergent power series $e^{A}:=\sum_{k=0}^{\infty} A^{k} / k!$.
a) $\mathrm{Use}^{4} r(t)=$ numapprox[pade] ($\left.\exp (\mathrm{t}), \mathrm{t},[3,3]\right)$ to approximate e^{A} by $r(A)$. With $r(t)=p(t) / q(t)$ and the matrix polynomials $p(A)$ and $q(A)$ this amounts to solving the linear matrix equation (use LinearSolve)

$$
q(A) \cdot X=p(A) \quad \Rightarrow \quad X=r(A)
$$

To evaluate $p(A)$ and $q(A)$, use a for loop realizing the so-called Horner scheme, ${ }^{5}$

$$
p(A)=c_{0}+A \cdot\left(c_{1}+A \cdot\left(c_{2}+\ldots+A \cdot\left(c_{n-1}+A \cdot c_{n}\right)\right)\right)
$$

Implement this in form of a procedure ratexp(A::Matrix). Use $A=$ evalf(HilbertMatrix(10)) for testing. Compare with MatrixExponential(A).
b) If A is 'large', the approximation quality may be rather bad. Due to $e^{A}=e^{A / 2+A / 2}=\left(e^{A / 2}\right)^{2}$ we may use the (better) approximation $r(A / 2)^{2}$. More generally, one may use $r(A / n)^{n}$ with $n \in \mathbb{N}$. This is called scaling and squaring. Modify your procedure from a) to include the parameter k such that scaling and squaring is performed with $n=2^{k}$. Compute the n-th matrix power in an efficient way.

For the test example from a), determine experimentally the smallest k such that

$$
\mid \text { ratexp(A,k) - MatrixExponential(A) } \mid<10^{-10}
$$

Here $|B|=\max (\operatorname{abs}(B))$ denotes the size of the largest element in B (by absolute value).

[^3]
[^0]: ${ }^{1}$ This makes sense for the special case $m=1$. If \mathbf{Q} is a vector, orthonormalize it.

[^1]: ${ }^{2}$ This is equivalent to Gram-Schmidt applied to the columns of U. The upper triangular matrix R contains the coefficients of the representation of the columns of U in terms of the columns of Q.

[^2]: ${ }^{3}$ We do not need this procedure because Maple readily can compute determinants. However, it may be necessary to do this in some other programming language.

[^3]: ${ }^{4}$ pade delivers a rational approximation, a sp-called Padé approximation. This is a rational analog of a Taylor polynomial. ${ }^{5}$ for $p(t)=c_{0}+c_{1} t+\ldots+c_{n} t^{n}$

