
Winfried Auzinger Sommersemester 2014
Dirk Praetorius 21.–23. Mai 2014

Übungsaufgaben zur VU Computermathematik

Serie 8

In all examples we use the package LinearAlgebra.

Exercise 8.1. We design a procedure for computing the orthogonal projection onto a linear subspace
U ⊆ Rn. Let m < n linearly independent vectors (u1, . . . , um) be given. We apply GramSchmidt to compute
an orthonormal basis (q1, . . . , qm) which spans the same linear space U as (u1, . . . , um).

Then, the orthogonal projection of x ∈ Rn onto U is given by

P x =
m∑
j=1

(x · qj) qj ,

where x · y = xTy = yTx.

The following makes only sense in floating point:

a) Design a procedure mgs(U::matrix) which expects a matrix U as its argument and which calls
GramSchmidt to orthonormalize the columns of U. The procedure returns a matrix Q with the cor-
responding orthonormal columns.

b) Design a procedure orthoproj(x::Vector,Q::{Vector,Matrix}) which expects a vector x and a
matrix Q (according to a)) or a single vector 1 Q as its arguments and returns the orthogonal projection
P x. If dimensions are incompatible, stop with an error message.

Remark on the mathematical background: The projection P x is the best approximation of x within
U , i.e., ‖u − x‖2 becomes minimal for u = P x. A matrix representation of the projector is given
by P = QQT satisfying PP = P (projector property) and P = P T (this characterizes orthogonal
projectors). Can you verify the latter properties? You may also ‘verify’ them experimentally.

Exercise 8.2. Let U be a linear subspace of R3 of dimension 2 (i.e., a plane containing 0). We wish to
determine the matrix representation of the projector P which projects x ∈ R3 onto U in direction of a
given vector 0 6= w 6∈ U . P is uniquely determined by the requirements (make a sketch)

P u = u, P v = v, P w = 0,

where u, v ∈ U are any linearly independent vectors spanning U .

Design a procedure

screw projector(u::Vector,v::Vector,w::Vector)

which returns the matrix P in form of an object of type Matrix. Use LinearSolve to solve the correspon-
ding matrix equation. What happens if w ∈ U or if u, v are linearly dependent?

Remark: If w ⊥ U , then the outcome is the orthogonal projector onto U .

1 This makes sense for the special case m = 1. If Q is a vector, orthonormalize it.

Exercise 8.3. Let U ∈ Rn×m and Q ∈ Rn×n be matrices in the sense of 8.1, with n > m. The function
QRDecomposition also converts U into Q: It returns the matrix Q together with a matrix R ∈ Rm×m such
that 2 U = QR, with R upper triangular.

a) Consider the problem of finding x ∈ Rm such that the residual norm ‖U x− b‖2 becomes minimal for
given U ∈ Rn×m and b ∈ Rn. The solution x can be obtained by solving the normal equations

UT (U x) = UT b ,

which, due to QTQ = I, is equivalent to

RT (Rx) = RT (QT b) .

Design a procedure leastsquares(U,b) which returns the solution x. Use QRDecomposition and
LinearSolve, without explicitly computing RTR or RTQ, which would be inefficient.

b) Solve a simple problem for some matrix U ∈ R3×2 and some vector b ∈ R3. Compare your results with
the outcome of LeastSquares, which does the same job.

Exercise 8.4. A differentiable vector field S : R2 ⊇ G → R3 defines a parametrization of a smooth
surface S ⊆ R3. The points on the surface are given by (x, y, z) = S(u, v) = (S1(u, v), S2(u, v), S3(u, v))
with (u, v) ∈ G.

Let G = [a, b] × [c, d] be a rectangle in (u, v) - plane. Then, the area of the surface is given by the double
integral∫

S
dσ :=

∫ d

v=c

∫ b

u=a

√
µ(u, v) du dv, with µ(u, v) := det

 ∂S
∂u
· ∂S
∂u

∂S
∂u
· ∂S
∂v

∂S
∂u
· ∂S
∂v

∂S
∂v
· ∂S
∂v

 .

Here,

∂S

∂u
=


∂S1

∂u
∂S2

∂u
∂S3

∂u


(analogously for v), and · is the dot product (= Euclidean inner product).

Use this formula in Maple to compute the area of a section of a hyperboloid in R3, given by

S(x, y) =


x

y

x y

 , (x, y) ∈ [−1, 1]× [−1, 1] .

This means that the hyperboloid is parametrized by the Cartesian coordinates in the (x, y) - plane, i.e., it
is simply represented as the graph of the function z(x, y) = x y, and x, y play the role of u, v. (You may
use plot3d to visualize this surface.)

This integral is nontrivial. Use evalf to find: area ≈ 5.123.

Exercise 8.5. Let a family of linear mappings ψ = ψm,n : Rn → Rm be given, where m,n ∈ N is
arbitrary, and where these mappings share a common definition, e.g.,(

ψ(x)
)
k

:=
n∑
j=1

j

k
xj , k = 1 . . .m,

or whatever you may choose for testing.

2 This is equivalent to Gram-Schmidt applied to the columns of U . The upper triangular matrix R contains the coefficients
of the representation of the columns of U in terms of the columns of Q.

a) Design a procedure psi(x::Vector,m::posint) which expects an object x of type Vector and a
positive integer m as its arguments and returns the value ψ(x) in form of a Vector of dimension m.

Remark: n is determined from Dimension(x). The syntax

psi := proc(x::Vector,m::posint)

means that the arguments passed to the procedure must have the corresponding types, otherwise the
procedure will exit with an error message (try out).

b) Design a procedure psimatrix(psi::procedure,m::posint,n::posint) which returns the corre-
sponding m × n coefficient matrix of the mapping ψm,n as an object of type Matrix. Check that a
call of psi gives the same result as the corresponding matrix-vector multiplication.

Exercise 8.6. An n× n matrix H = (hi,j) is called upper Hessenberg if hi,j = 0 for j < i− 1.

a) Design a recursive procedure which computes the determinant of an upper Hessenberg matrix: 3 By
expanding the determinant along the first column (Laplace expansion theorem), evaluation of the
determinant for dimension n is reduced to 2 evaluations of the determinants of submatrices of dimension
n− 1 which are also upper Hessenberg. (Make a sketch.)

Choose an example and compare with Determinant(...). Also use time() to observe computing times
for n = 10, 20, 30. What do you observe? Explain the effect. How many recursive calls are performed?

Hint: For extracting a submatrix you may use vector index notation using index lists. For instan-
ce, H[[1,3..n],[2..n]] removes the second row and the first column. This can also be written as
H[[1,3..n],2..n].

b) The algorithm from a) is a nice exercise but it is stupid. Write another one: Let Hk = H[k,..] denote
the k - th row of H.

• Replace H2 by a linear combination of H1 and H2 such that the new H2 satisfies H2,1 = 0, i.e.,
set H[2,..] := H[2,..] +α H[1,..] with the appropriate value for α.

• Replace H3 by a linear combination of (the new) H2 and H3 such that the new H3 satisfies
H3,2 = 0.

• . . . (As you know, the determinant is invariant under these operations.)

• After n− 1 steps, return the determinant of the resulting modified matrix H.

You may assume that no division by zero occurs; otherwise the algorithm would have to be modified.
But insert an error branch which monitors this case. Repeat the tests from a).

Exercise 8.7.

a) With plots[arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping
ψ : R3 → R3 represented by a coefficient matrix A, by drawing the parallelepiped spanned by the
image of the unit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1) under the mapping. Produce a nice plot.

3 We do not need this procedure because Maple readily can compute determinants. However, it may be necessary to do
this in some other programming language.

b) Another visualization is provided by the image of the unit sphere under the mapping. To this end, use
spherical coordinates

x = cos θ cosϕ,

y = cos θ sinϕ,

z = sin θ,

with ϕ ∈ [0, 2π] and θ ∈ [−π
2
, π
2
] and use the plot3d syntax for parametric surfaces. (See ? plot3d,

‘Plotting a parametric surface’.)

Produce a nice plot. Also use display[3d] to combine this with a plot of the unit sphere. Use different
colors and set the option transparency=0.5.

Hint: With convert(...,list) you can convert a Vector into a list.

Exercise 8.8. For a square matrix A, the matrix exponential is defined as the convergent power series

eA :=
∞∑
k=0

Ak/k!.

a) Use 4 r(t) = numapprox[pade](exp(t),t,[3,3]) to approximate eA by r(A). With r(t) = p(t)/q(t)
and the matrix polynomials p(A) and q(A) this amounts to solving the linear matrix equation (use
LinearSolve)

q(A) ·X = p(A) ⇒ X = r(A) .

To evaluate p(A) and q(A), use a for loop realizing the so-called Horner scheme, 5

p(A) = c0 + A ·
(
c1 + A ·

(
c2 + . . .+ A · (cn−1 + A · cn

)))
Implement this in form of a procedure ratexp(A::Matrix). Use A = evalf(HilbertMatrix(10)) for
testing. Compare with MatrixExponential(A).

b) If A is ‘large’, the approximation quality may be rather bad. Due to eA = eA/2+A/2 =
(
eA/2

)2
we

may use the (better) approximation r(A/2)2. More generally, one may use r(A/n)n with n ∈ N. This
is called scaling and squaring. Modify your procedure from a) to include the parameter k such that
scaling and squaring is performed with n = 2k. Compute the n-th matrix power in an efficient way.

For the test example from a), determine experimentally the smallest k such that

| ratexp(A,k) - MatrixExponential(A) | < 10−10 .

Here | B | = max(abs(B)) denotes the size of the largest element in B (by absolute value).

4 pade delivers a rational approximation, a sp-called Padé approximation. This is a rational analog of a Taylor polynomial.
5 for p(t) = c0 + c1 t + . . . + cn t

n

