Übungsaufgaben zur VU Computermathematik Serie 7

Exercise 7.1. Curves in 3D.

a) A curve in 3D is specified by three coordinate functions $x(t), y(t), z(t)$, where the parameter t varies in some real interval $[a, b]$. Choose a curve (with differentiable coordinate functions $x(t), y(t), z(t))$ and plot it using spacecurve as well as using tubeplot from the plots package. Play with plot parameters in order to produce a nice plot.
b) Compute the arclength of your curve from a) according to the formula

$$
\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} d t
$$

If int is not able to provide the exact result, compute a numerical approximation using the int-option numeric or using evalf.
c) Design a procedure approximate_arclength (C, n) which returns your own (very simple) numerical approximation of the arclength of a curve. Here:

- C is assumed to be a list of length 4, with the first entry representing the parameter interval $[a, b]$ and the other entries representing the coordinate functions $x(t), y(t), z(t)$. (I.e., C [1] is a list of length 2 , and C [2] , C [3] , C [4] are Maple functions.)
- $\mathrm{n} \in \mathbb{N}$ specifies that for the numerical integration the interval $[a, b]$ is divided into n subintervals of the same length $h=(b-a) / n$.

On each of these subinterval your procedure approximates the arclength over this subinterval by the trapezoidal rule (see 6.7 a)). These values are summed up. Use evalf and compare with b). How does the error of the approximation behave if you replace a given value n by $2 n, 4 n, \ldots$?

Exercise 7.2. Sudoku.
Let a standard 9×9 Sudoku tableau be represented by a 9×9 Matrix S with entries $S[i, j] \in\{0,1,2,3,4,5,6,7,8,9\}$. Here, 0 means that the corresponding entry is void. (If no entry is 0 , this means that the tableau is completely filled.)

Design a procedure check_sudoku(S) which returns true if the tableau S is valid according to the Sudoku rules, and false otherwise.

Exercise 7.3. An argmax implementation.
Design a procedure $\operatorname{argmax}(A::\{\text { Vector, Matrix }\})^{1}$ which accepts an object A of type Vector or Matrix as its argument and returns the positions ${ }^{2}$ of the maximal elements in A. For the case of a Matrix, the 'position' is the corresponding pair of indices. Return the answer in form of a list [of lists].

Include a check whether all elements of A have a numerical value (use is(...,numeric)). ${ }^{3}$ If one of these tests fails, exit with an error-message.

Remark: In Maple, there is max but there seems not to exist something like argmax.
Hint: Using type you can determine the type of an object. In this way you can discern between Vector and Matrix.

[^0]Exercise 7.4. Recursive procedures; application of the unapply command (see lecture, Part II).
a) Let the numbers $B(n)$ defined by

$$
B(0)=1, \quad \text { and } \quad B(n)=\sum_{j=0}^{n-1}\binom{n-1}{j} B(j) \quad \text { for } \quad j \geq 1
$$

Design a recursive procedure $\mathrm{B}(\mathrm{n})$ which computes $B(n)$ for given $\mathrm{n} \in \mathbb{N}$.
Can you evaluate $B(1000)$?
b) Let the functions $\phi_{j}(\cdot)$ be recursively defined by

$$
\phi_{0}(z)=e^{z}, \quad \text { and } \quad \phi_{j}(z)=\frac{\phi_{j-1}(z)-\frac{1}{(j-1)!}}{z} \quad \text { for } j \geq 1
$$

Design a recursive procedure generate_phi(j: :nonnegint) ${ }^{4}$ returns the 'ready-cooked' Maple function $\phi_{j}(\cdot)$. Use unapply and normal. Then the resulting functions should be ${ }^{5}$

$$
\phi_{1}(z)=\frac{e^{z}-1}{z}, \quad \phi_{2}(z)=\frac{e^{z}-1-z}{z^{2}}, \quad \ldots
$$

Exercise 7.5. Two further recursive procedures: nothing special, just to train recursion.
a) Design a recursive procedure $\mathrm{p}(\mathrm{n})$ which produces the following output (using print (...), up to the value n specified on call):

Your procedure produces printed output but returns no value. This means that no return is necessary (one may also use return without specifying a return value).
b) A list L is palindromic if $\mathrm{L}[i]=\mathrm{L}[n+1-i]$ for $i=1 \ldots n$, where n denotes the length of L .

Design a recursive procedure ${ }^{6}$ ispalindromic (L) which expects a list L as its argument and returns true if L is palindromic, otherwise false.
Special cases: [] and a list of length 1 are palindromic.
Exercise 7.6. Convex minimization: a numerical bisection algorithm.
Design a procedure findminimum ($\mathrm{f}, \mathrm{a}, \mathrm{b}, \mathrm{accuracy}$) which finds the unique minimum of a strictly convex real function $f:[a, b] \rightarrow \mathbb{R}$ by the searching algorithm described \rightarrow below. accuracy is a small positive number specifying how much the search should be refined. The procedure returns an interval of length \leq accuracy (in form of a list) which contains the position $x_{\text {min }}$ where the minimum is attained. All numerical computations are performed in floating point arithmetic.

[^1]
\rightarrow We assume that f and its derivatives are continuous, $f^{\prime}(a)<0, f^{\prime}(b)>0$, and $f^{\prime \prime}(x)>0$ for all $x \in(a, b)$. Then, by elementary calculus, f has a unique minimum in (a, b). This can be found numerically by a bisection strategy: Let $c:=(a+b) / 2$.
(i) If $f^{\prime}(c)=0$, the minimum is located at c.
(ii) If $f^{\prime}(c)>0$, the minimum is contained in (a, c).
(ii) If $f^{\prime}(c)<0$, the minimum is contained in (c, b).

This leads in an an obvious way to a simple bisection algorithm for identifying an interval of length \leq accuracy in which $x_{\text {min }}$ is located. You may formulate it in an iterative or recursive way. Note that, 'by chance', $x_{m i n}$ may be found exactly (see (i)). In this case the algorithm immediately returns this value.

Exercise 7.7. Formatted output.

a) Design a procedure print_sudoku(S) which produces a formatted output of a Sudoku (see 7.2)) to the screen.

				4	2						
	8	23			2	7		1			
1	9	2		1	5	3					I
	12	2			2	7		5			
1			3	7		3			2		
	1	3	3	5	2	8		1			
	1	28	8	4	2	3		7			
	7	3		4		3					
		25				9		1			

Use an auxiliary function which converts 0 to the string " " and integers $n>0$ to the string " n ".
Hint: Use sprintf and printf.
b) Design a procedure print_sudoku(S,filename) which prints a Sudoku to a textfile (the filename is specified as a string). Hint: Use fprintf.

Exercise 7.8. Look at the help page ? index, and select packages. Here you see a complete list of available packages. Choose one of them, have a closer look, and prepare a small demo of its basic features.
There are many different packages. If you have no other special preference, you may take a closer look at the plots package. The package geometry is also very nice.

[^0]: ${ }^{1}$ This syntax means that arguments of the type Vector or Matrix are accepted; otherwise the procedure will automatically exit with an error message (try). For accepting a single type only, e.g., Vector, one would use the syntax A: Vector.
 ${ }^{2}$ The maximal value may be attained several times.
 ${ }^{3}$ Data types are organized in a hierarchic way. E.g., the types integer, rational, float are sub-types of the type numeric representing any numerical real value.

[^1]: ${ }^{4}$ nonnegint is the type representing nonnegative integers $\in \mathbb{N}_{0}$, a subtype of the numeric type integer representing \mathbb{Z}. The type posint represents \mathbb{N}.
 ${ }^{5}$ Without using normal you would generate, e.g., $\phi_{2}(z)$ in the form $\frac{\frac{e^{z}-1}{z}-1}{z}$.
 ${ }^{6}$ Of course, this can also be easily realized using a for loop.

