Übungsaufgaben zur VU Computermathematik Serie 7

Exercise 7.1. Curves in 3D.

- a) A curve in 3D is specified by three coordinate functions x(t), y(t), z(t), where the parameter t varies in some real interval [a, b]. Choose a curve (with differentiable coordinate functions x(t), y(t), z(t)) and plot it using spacecurve as well as using tubeplot from the plots package. Play with plot parameters in order to produce a nice plot.
- b) Compute the arclength of your curve from a) according to the formula

$$\int_{a}^{b} \sqrt{x'(t)^{2} + y'(t)^{2} + z'(t)^{2}} \, dt$$

If int is not able to provide the exact result, compute a numerical approximation using the int-option numeric or using evalf.

- c) Design a procedure approximate_arclength(C,n) which returns your own (very simple) numerical approximation of the arclength of a curve. Here:
 - C is assumed to be a list of length 4, with the first entry representing the parameter interval [a, b] and the other entries representing the coordinate functions x(t), y(t), z(t). (I.e., C[1] is a list of length 2, and C[2],C[3],C[4] are Maple functions.)
 - $n \in \mathbb{N}$ specifies that for the numerical integration the interval [a, b] is divided into n subintervals of the same length h = (b a)/n.

On each of these subinterval your procedure approximates the arclength over this subinterval by the trapezoidal rule (see **6.7 a**)). These values are summed up. Use **evalf** and compare with **b**). How does the error of the approximation behave if you replace a given value n by $2n, 4n, \ldots$?

Exercise 7.2. Sudoku.

Let a standard 9×9 Sudoku tableau be represented by a 9×9 Matrix S with entries S[i,j] $\in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. Here, 0 means that the corresponding entry is void. (If no entry is 0, this means that the tableau is completely filled.)

Design a procedure check_sudoku(S) which returns true if the tableau S is valid according to the Sudoku rules, and false otherwise.

Exercise 7.3. An argmax implementation.

Design a procedure $\operatorname{argmax}(A::{\operatorname{Vector},\operatorname{Matrix}})^1$ which accepts an object A of type Vector or Matrix as its argument and returns the positions² of the maximal elements in A. For the case of a Matrix, the 'position' is the corresponding pair of indices. Return the answer in form of a list [of lists].

Include a check whether all elements of A have a numerical value (use is(...,numeric)).³ If one of these tests fails, exit with an error-message.

Remark: In Maple, there is max but there seems not to exist something like argmax.

Hint: Using type you can determine the type of an object. In this way you can discern between Vector and Matrix.

 $^{^{1}}$ This syntax means that arguments of the type Vector or Matrix are accepted; otherwise the procedure will automatically exit with an error message (try). For accepting a single type only, e.g., Vector, one would use the syntax A::Vector.

 $^{^2\,{\}rm The}$ maximal value may be attained several times.

 $^{^{3}}$ Data types are organized in a hierarchic way. E.g., the types integer, rational, float are sub-types of the type numeric representing any numerical real value.

Exercise 7.4. Recursive procedures; application of the unapply command (see lecture, Part II).

a) Let the numbers B(n) defined by

$$B(0) = 1$$
, and $B(n) = \sum_{j=0}^{n-1} {\binom{n-1}{j}} B(j)$ for $j \ge 1$

Design a recursive procedure B(n) which computes B(n) for given $n \in \mathbb{N}$. Can you evaluate B(1000)?

b) Let the functions $\phi_i(\cdot)$ be recursively defined by

$$\phi_0(z) = e^z$$
, and $\phi_j(z) = \frac{\phi_{j-1}(z) - \frac{1}{(j-1)!}}{z}$ for $j \ge 1$

Design a recursive procedure generate_phi(j::nonnegint)⁴ returns the 'ready-cooked' Maple function $\phi_j(\cdot)$. Use unapply and normal. Then the resulting functions should be⁵

$$\phi_1(z) = \frac{e^z - 1}{z}, \quad \phi_2(z) = \frac{e^z - 1 - z}{z^2}, \quad \dots$$

Exercise 7.5. Two further recursive procedures: nothing special, just to train recursion.

a) Design a recursive procedure p(n) which produces the following output (using print(...), up to the value n specified on call):

Your procedure produces printed output but returns no value. This means that no **return** is necessary (one may also use **return** without specifying a return value).

b) A list L is *palindromic* if L[i]=L[n+1-i] for i=1...n, where n denotes the length of L.

Design a *recursive* procedure⁶ ispalindromic(L) which expects a list L as its argument and returns true if L is palindromic, otherwise false.

Special cases: [] and a list of length 1 are palindromic.

Exercise 7.6. Convex minimization: a numerical bisection algorithm.

Design a procedure find_minimum(f,a,b,accuracy) which finds the unique minimum of a strictly convex real function $f: [a,b] \to \mathbb{R}$ by the searching algorithm described \to below. accuracy is a small positive number specifying how much the search should be refined. The procedure returns an interval of length \leq accuracy (in form of a list) which contains the position x_{min} where the minimum is attained. All numerical computations are performed in floating point arithmetic.

⁴ nonnegint is the type representing nonnegative integers $\in \mathbb{N}_0$, a subtype of the numeric type integer representing \mathbb{Z} . The type posint represents \mathbb{N} .

⁵ Without using normal you would generate, e.g., $\phi_2(z)$ in the form $\frac{\frac{e^z-1}{z}-1}{z}$.

⁶ Of course, this can also be easily realized using a for loop.

 \rightarrow We assume that f and its derivatives are continuous, f'(a) < 0, f'(b) > 0, and f''(x) > 0 for all $x \in (a, b)$. Then, by elementary calculus, f has a unique minimum in (a, b). This can be found numerically by a *bisection strategy:* Let c := (a + b)/2.

- (i) If f'(c) = 0, the minimum is located at c.
- (ii) If f'(c) > 0, the minimum is contained in (a, c).
- (ii) If f'(c) < 0, the minimum is contained in (c, b).

This leads in an an obvious way to a simple bisection algorithm for identifying an interval of length \leq accuracy in which x_{min} is located. You may formulate it in an iterative or recursive way. Note that, 'by chance', x_{min} may be found exactly (see (i)). In this case the algorithm immediately returns this value.

Exercise 7.7. Formatted output.

a) Design a procedure print_sudoku(S) which produces a formatted output of a Sudoku (see 7.2)) to the screen.

 	8 9	8 2	3 2	 	4	2 2 5	3 7 3	 	1		3 5	
 	1	2	3 3	 	7 5	2 2	7 3 8	 	5 1 1	2	3 2	
 	1 7	2 2	8 3 5	 	4	2 2	3 3 9	 	7		9 3	

Use an auxiliary function which converts 0 to the string " " and integers n > 0 to the string "n". *Hint:* Use sprintf and printf.

b) Design a procedure print_sudoku(S,filename) which prints a Sudoku to a textfile (the filename is specified as a string). *Hint:* Use fprintf.

Exercise 7.8. Look at the help page ? index, and select packages. Here you see a complete list of available packages. Choose one of them, have a closer look, and prepare a small demo of its basic features.

There are many different packages. If you have no other special preference, you may take a closer look at the plots package. The package geometry is also very nice.