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In all examples we use the package LinearAlgebra and the data types Vector and Matrix. Some of these exercises also
serve to illustrate how [operations on] vectors and matrices are denoted and handled in numerical linear algebra; see also the
exercises on MATLAB. In particular, column vectors are often identified with n x 1 matrices, and row vectors are identified
with 1 X n matrices, Here, only the case of real vectors and matrices is considered.

It is assumed that you are familiar with basic properties of the Fuclidean inner product w - v and its geometric meaning in
R? and R3. Two vectors u,v are called orthogonal, u L v, if u-v =0.

Vectors u are generally to be understood as columns vectors, and u” is the corresponding row vector. If uw and v have the
same dimension, vTu = uTv is the dot product (Euclidean inner product) u -v. For arbitrary dimensions, uv? is the outer

product (or dyadic product), which is a matrix.

lull = Vu-u=vuTu=+/Y,u? is the Buclidean norm of a vector u.

Several exercises are based on assertions from linear algebra which you may be aware of (or not). Some of these assertions
are easy to prove; others not. You may try to think about some of these proofs, but this is not essential here. For special
cases one may give a (brute-force) ‘computer-aided proof’; see for instance Exercise 8.4b).

‘Verify” means: verify by testing on examples.

Exercise 8.1. [Investigation of a parameter-dependent matriz.

Consider the matrix

0 a 1 0 O
1 0 0 b O
A=101 b 0 1
b 0 01 0
0 b 1 0 b

depending on two parameters a and b. Use Maple / LinearAlgebra:
a) For which values a, b is A invertible? Determine the inverse of A.
b) Same question as in a), for the symmetric part (A + AT)/2 instead of A.

c) Same question as in a), for the skew-symmetric part (A — AT)/2 instead of A.

Exercise 8.2. Basic operations with vectors and matrices.

a) Assertion: Given two vectors 0 # u,v € R™, the rank of the n x n matriz uv? is 1.
U1 U1
e ‘Verify’ this for the case n = 3 and arbitrary vectors u = ug |, v= | vy |. Furthermore, compute a basis for
us V3

the kernel (also called nullspace) of this matrix, and comment on the result. (You may begin with n = 2.)
Hint: Use Rank and NullSpace.

b) (a) continued:) ‘Verify’ the elementary identity (uv?)z = (vTz)u for vectors u,v,x € R™. Also, explain why this
identity holds true.

c) Assertion: Given two column vectors u,v € R"™ satisfying vIu # 1, the n x n matriz I —uv? is invertible, with
T
-1 U
I —uv” =] - ———
( ) vTu—1
Uy U1
e ‘Verify’ this identity for the case n = 3 and arbitrary symbolic vectors u= | us |, v= 1] v
us U3

(You may begin with n = 2.)



d) Design two functions which expect three vectors u,v,x as its arguments and which evaluate

(I—uvT)x and (I—uvT)_la:

without explicitly forming the matrices.

Exercise 8.3. Understanding orthogonal projectors.

For the numerical computations, use simple data and exact arithmetic (not evalf).

a) Design a procedure Umatrix(ulist) which expects a list ulist consisting of 1 < m < n column vectors u; € R" as its
argument and returns the matrix

U=|w|u| ... |uy | e¢R™™

In the following, let g, ..., u,, be a set of 1 < m < n orthonormal vectors in R", i.e., u; - u; = ujTui = ;5.

b) Assertion: The matriz P := UUT represents an orthogonal projector onto the m-dimensional subspace {U = A\juy +. ..+
AmtUm, A\i € R} of R™, d.e., Pex=x forx €U and Pz =0 forx L U.

e Choose two orthonormal numerical vectors uj, us € R? and illustrate the behavior of the mapping x — P x for some
numerical vectors . What is the rank of P? Also, verify P = PT = P2, What is UTU ?

c) ‘Verify’ the identity !
Px= Z (zTu;)u; for x € R™.

and implement evaluation of Pz in this way, without explicitly forming the matrix P.

d) Assertion: The matriz Q := I — UUT represents an orthogonal projector onto the (n — m)-dimensional orthogonal
complement of U, i.e., Qx =0 forx €ed and Qx =z forx L U.

e Choose two orthonormal numerical vectors uy,us € R? (see b)) and illustrate this behavior of the mapping z +— Q x
for some numerical vectors x. What is the rank of Q ? Also, verify Q = QT = Q2.

Exercise 8.4. A formula for the inverse of a matriz after a low-rank perturbation.

Let A € R™ ™ be invertible, and U,V € R™"**. Then, the Sherman-Morrison-Woodbury (SMW) formula holds: A +UV7T ¢
R™*™ is invertible if and only if I + VT A1 U € R¥** is invertible, with 2

(A+UVT) " = A A U+ VA D) vTAL,
a) Implement this formula in form of a procedure

SMW_inverse(AI: :Matrix,U::{Matrix,Vector[column]},V::{Matrix,Vector [column]})

In AI, the given inverse A~! is passed. For the case k = 1, admit that U,V are specified in form of objects of type
Vector [column] instead of Matrix and treat the case k = 1 separately (1D inverse!).

b) Try to give a computer-aided proof of the SMW formula for the case n = 2 and k = 1, i.e., for a symbolic 2 x 2 matrix A
and two symbolic column vectors U,V € R2. (You may also try the case n = 3, k = 1.)

¢) Choose a numerical example (e.g., n = 9, k = 3) and compare with direct inversion. Use floating point arithmetic (evalf).

! From this identity you can understand why UU7T is an orthogonal projector.
2See 2c) for a special case. The SMW formula can be used to compute the inverse (A + UVT)_l, assuming A~! is already known. The

additional effort involves only a smaller inverse (I + VT A~! U)_1 € R*XF¥ and using the SMW formula is more efficient than direct inversion of
(I+VTA-IU) if k < n (i.e., if the perturbation UV T is of low rank < k < n).



Exercise 8.5. Playing with determinants.

The well-known formula for the determinant of a 2 X 2 matrix generalized as follows: Consider a matrix block-partitioned
according to

A B
M = e R™",
C D

where A € RF*F D e ROk x(n=k) " < p,
Assertion: Suppose A is invertible. Then the determinant of M equals >
det(M) = det(A) det(D —C A™! B).
e ‘Verify’ this identity for an example of your choice with integer coefficients. Use Determinant.
e An other variant reads (for D invertible)
det(M) = det(D) det(X)
What is X7 Think about it and test.

Exercise 8.6. Quadratic forms on R2.
For a (symmetric) 2 x 2 matrix A, the function f: R? — R defined by
T
q(x) = (Az) =
is called a quadratic form. It is a bivariate polynomial in the variables z1 and x5 (z = (21, x2)).

a) Design a function q(A,x1,x2) which evaluates this quadratic form for given z = (x1,x2).

Remark: Choosing the names x,y instead of x1,x2 will be more convenient here.

b) For given ¢ € R, the solutions x of the equation g(x) = ¢ are located on a conic section (Kegelschnitt) in the plane.

e Choose several examples (i.e,, choose A and ¢), and use your function q from a) and plots[implicitplot] to visualize
the corresponding conic section.

Hint: When using implicitplot, increasing the value of the parameter numpoints may be essential to obtain a good
resolution.

Exercise 8.7. Visualization of linear mappings.

a) With plots[arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping ¢: R® — R3? represented
by a coefficient matrix A, by drawing the parallelepiped spanned by the image of the unit vectors (1,0,0), (0,1,0) and
(0,0, 1) under the mapping. Choose an example and produce a nice plot.

b) (x) Another visualization is provided by the image of the unit sphere under the mapping. To this end, use spherical
coordinates
x = cos B cos p,
y = cos @ sinp,
z =sinb,
with ¢ € [0,27] and 0 € [-7, 7], and use plot3d.
Produce a nice plot. Also use display[3d] to combine this with a plot of the unit sphere. Use different colors and set
the option transparency=0.5.

Hint: With convert(...,1list) you can convert a Vector into a list.

Exercise 8.8. Compressed representation of sparse matrices.

a) Check the help page for LinearAlgebra[CompressedSparseForm], understand what it means, and explain by means of
an example.

Remark: This only works for matrices where the entries are of hardware type. Use double precision (datatype=hfloat).
b) Same as a), for LinearAlgebra[FromCompressedSparseForm].

c) (%) Implement matrix-vector multiplication assuming that the matrix is given in compressed sparse form. (The vector is
assumed to be of the normal type Vector.)

3D — C A~ B is called the Schur complement of A.

4 This works in a similar way as storage of sparse matrices in MATLAB.



