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In all examples we use the package LinearAlgebra and the data types Vector and Matrix. Some of these exercises also
serve to illustrate how [operations on] vectors and matrices are denoted and handled in numerical linear algebra; see also the
exercises on Matlab. In particular, column vectors are often identified with n× 1 matrices, and row vectors are identified
with 1× n matrices, Here, only the case of real vectors and matrices is considered.

It is assumed that you are familiar with basic properties of the Euclidean inner product u · v and its geometric meaning in
R2 and R3. Two vectors u, v are called orthogonal, u ⊥ v, if u · v = 0.

Vectors u are generally to be understood as columns vectors, and uT is the corresponding row vector. If u and v have the
same dimension, vTu = uT v is the dot product (Euclidean inner product) u · v. For arbitrary dimensions, u vT is the outer
product (or dyadic product), which is a matrix.

‖u‖ =
√
u · u =

√
uTu =

√∑
i u

2
i is the Euclidean norm of a vector u.

Several exercises are based on assertions from linear algebra which you may be aware of (or not). Some of these assertions
are easy to prove; others not. You may try to think about some of these proofs, but this is not essential here. For special
cases one may give a (brute-force) ‘computer-aided proof’; see for instance Exercise 8.4 b) .

‘Verify’ means: verify by testing on examples.

Exercise 8.1. Investigation of a parameter-dependent matrix.

Consider the matrix

A =


0 a 1 0 b
1 0 0 b 0
0 1 b 0 1
b 0 0 1 0
0 b 1 0 b


depending on two parameters a and b. Use Maple / LinearAlgebra :

a) For which values a, b is A invertible? Determine the inverse of A.

b) Same question as in a), for the symmetric part (A+AT )/2 instead of A.

c) Same question as in a), for the skew-symmetric part (A−AT )/2 instead of A.

Exercise 8.2. Basic operations with vectors and matrices.

a) Assertion: Given two vectors 0 6= u, v ∈ Rn, the rank of the n× n matrix u vT is 1.

• ‘Verify’ this for the case n = 3 and arbitrary vectors u =

 u1
u2
u3

, v =

 v1
v2
v3

. Furthermore, compute a basis for

the kernel (also called nullspace ) of this matrix, and comment on the result. (You may begin with n = 2.)

Hint: Use Rank and NullSpace.

b) (a) continued: ) ‘Verify’ the elementary identity (u vT )x = (vTx)u for vectors u, v, x ∈ Rn. Also, explain why this
identity holds true.

c) Assertion: Given two column vectors u, v ∈ Rn satisfying vTu 6= 1, the n× n matrix I − u vT is invertible, with(
I − u vT

)−1
= I − u vT

vTu− 1

• ‘Verify’ this identity for the case n = 3 and arbitrary symbolic vectors u =

 u1
u2
u3

, v =

 v1
v2
v3

.

(You may begin with n = 2.)



d) Design two functions which expect three vectors u,v,x as its arguments and which evaluate(
I − u vT

)
x and

(
I − u vT

)−1
x

without explicitly forming the matrices.

Exercise 8.3. Understanding orthogonal projectors.

For the numerical computations, use simple data and exact arithmetic (not evalf).

a) Design a procedure Umatrix(ulist) which expects a list ulist consisting of 1 ≤ m ≤ n column vectors ui ∈ Rn as its
argument and returns the matrix

U =

 u1 u2 . . . um

 ∈ Rn×m

In the following, let u1, . . . , um be a set of 1 ≤ m ≤ n orthonormal vectors in Rn, i.e., ui · uj = uTj ui = δij .

b) Assertion: The matrix P := UUT represents an orthogonal projector onto the m-dimensional subspace {U := λ1u1 + . . .+
λmum, λi ∈ R} of Rn, i.e., P x = x for x ∈ U and P x = 0 for x ⊥ U .

• Choose two orthonormal numerical vectors u1, u2 ∈ R3 and illustrate the behavior of the mapping x 7→ P x for some
numerical vectors x. What is the rank of P ? Also, verify P = PT = P 2. What is UTU ?

c) ‘Verify’ the identity 1

P x =

m∑
i=1

(xTui)ui for x ∈ Rn .

and implement evaluation of P x in this way, without explicitly forming the matrix P .

d) Assertion: The matrix Q := I − UUT represents an orthogonal projector onto the (n − m)-dimensional orthogonal
complement of U , i.e., Qx = 0 for x ∈ U and Qx = x for x ⊥ U .

• Choose two orthonormal numerical vectors u1, u2 ∈ R3 (see b)) and illustrate this behavior of the mapping x 7→ Qx
for some numerical vectors x. What is the rank of Q ? Also, verify Q = QT = Q2.

Exercise 8.4. A formula for the inverse of a matrix after a low-rank perturbation.

Let A ∈ Rn×n be invertible, and U, V ∈ Rn×k. Then, the Sherman-Morrison-Woodbury (SMW) formula holds: A+ UV T ∈
Rn×n is invertible if and only if I + V TA−1 U ∈ Rk×k is invertible, with 2

(A+ UV T )
−1

= A−1 −A−1 U(I + V TA−1 U)
−1
V TA−1 .

a) Implement this formula in form of a procedure

SMW inverse(AI::Matrix,U::{Matrix,Vector[column]},V::{Matrix,Vector[column]})

In AI, the given inverse A−1 is passed. For the case k = 1, admit that U,V are specified in form of objects of type
Vector[column] instead of Matrix and treat the case k = 1 separately (1D inverse!).

b) Try to give a computer-aided proof of the SMW formula for the case n = 2 and k = 1, i.e., for a symbolic 2× 2 matrix A

and two symbolic column vectors U,V ∈ R2. (You may also try the case n = 3, k = 1.)

c) Choose a numerical example (e.g., n = 9, k = 3) and compare with direct inversion. Use floating point arithmetic (evalf).

1 From this identity you can understand why UUT is an orthogonal projector.
2 See 2 c) for a special case. The SMW formula can be used to compute the inverse (A + UV T )

−1
, assuming A−1 is already known. The

additional effort involves only a smaller inverse (I + V TA−1 U)
−1 ∈ Rk×k, and using the SMW formula is more efficient than direct inversion of

(I + V TA−1 U) if k � n (i.e., if the perturbation UV T is of low rank ≤ k � n).



Exercise 8.5. Playing with determinants.

The well-known formula for the determinant of a 2 × 2 matrix generalized as follows: Consider a matrix block-partitioned
according to

M =

 A B

C D

 ∈ Rn×n,

where A ∈ Rk×k, D ∈ R(n−k)×(n−k), k < n.

Assertion: Suppose A is invertible. Then the determinant of M equals 3

det(M) = det(A) det(D − C A−1B) .

• ‘Verify’ this identity for an example of your choice with integer coefficients. Use Determinant.

• An other variant reads (for D invertible)

det(M) = det(D) det(X)

What is X? Think about it and test.

Exercise 8.6. Quadratic forms on R2 .

For a (symmetric) 2× 2 matrix A, the function f : R2 → R defined by

q(x) = (Ax)
T
x

is called a quadratic form. It is a bivariate polynomial in the variables x1 and x2 (x = (x1, x2)).

a) Design a function q(A,x1,x2) which evaluates this quadratic form for given x = (x1, x2).

Remark: Choosing the names x,y instead of x1,x2 will be more convenient here.

b) For given c ∈ R, the solutions x of the equation q(x) = c are located on a conic section (Kegelschnitt ) in the plane.

• Choose several examples (i.e,, choose A and c), and use your function q from a) and plots[implicitplot] to visualize
the corresponding conic section.

Hint: When using implicitplot, increasing the value of the parameter numpoints may be essential to obtain a good
resolution.

Exercise 8.7. Visualization of linear mappings.

a) With plots[arrow] you can draw arrows. Use this to visualize the behavior of a linear mapping ψ : R3 → R3 represented
by a coefficient matrix A, by drawing the parallelepiped spanned by the image of the unit vectors (1, 0, 0), (0, 1, 0) and
(0, 0, 1) under the mapping. Choose an example and produce a nice plot.

b) (∗) Another visualization is provided by the image of the unit sphere under the mapping. To this end, use spherical
coordinates

x = cos θ cosϕ,

y = cos θ sinϕ,

z = sin θ,

with ϕ ∈ [0, 2π] and θ ∈ [−π2 ,
π
2 ], and use plot3d.

Produce a nice plot. Also use display[3d] to combine this with a plot of the unit sphere. Use different colors and set
the option transparency=0.5.

Hint: With convert(...,list) you can convert a Vector into a list.

Exercise 8.8. Compressed representation of sparse matrices. 4

a) Check the help page for LinearAlgebra[CompressedSparseForm], understand what it means, and explain by means of
an example.

Remark: This only works for matrices where the entries are of hardware type. Use double precision (datatype=hfloat).

b) Same as a), for LinearAlgebra[FromCompressedSparseForm].

c) (∗) Implement matrix-vector multiplication assuming that the matrix is given in compressed sparse form. (The vector is
assumed to be of the normal type Vector.)

3 D − C A−1 B is called the Schur complement of A.
4 This works in a similar way as storage of sparse matrices in Matlab.


