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Übungsaufgaben zur VU Computermathematik

Serie 9

Eine Sammlung verschiedener Problemstellungen, teilweise mit stofflichen Ergänzungen, entsprechend erläutert.

Enthält auch einige Grafik-Spielereien.

Exercise 9.1. An example from linear algebra. Error handling.

For a given matrix A ∈ Rm×n with m > n, the matrix

A+ := (ATA)
−1
AT ∈ Rn×m

is called the pesudoinverse of A. This is well-defined 1 if A has full rank m.

a) Design a procedure pinv(A::Matrix,v::Vector), which expects a matrix A and a vector v as its arguments and returns
A+ v. Use LinearAlgebra[LinearSolve]. Exit with an error message if the dimensions of A and v are not compatible.
Test with numerical (float) data.

b) The try: ... catch: ... end try construct allows you to protect critical parts of your code, with a controlled error
handling by the catch branch if the try branch fails. 2

Example:

try:

b := 1/a;

c := 1/d;

catch:

error "Division by zero: a=0 or d=0!"

end try:

• Extend the procedure pinv by including a try: ... construct which issues your own error message (instead of the
error message generated by LinearSolve) if system solving fails.

c) Modify pinv in an appropriate way such that, optionally, the matrix A+ is returned.

Exercise 9.2. Analyzing and visualizing a curve in 2D. (Use the plots package.)

Consider the curve implicitly defined by the equation(
x2 + y2

)3
= 4x2 y2

a) Use plots[implicitplot] to draw the curve. Produce a nice-looking plot by utilizing the options thickness and
numpoints.

b) For an explicit parametric representation of this curve we use polar coordinates. Substitute x = r cosϕ, y = r sinϕ, and
solve the given equation for r using solve. This gives r = r(ϕ) as a function of ϕ.

Warning: In the natural polar representation, r also becomes negative. This can be seen from the animation c).

Check the help page ? plot/parametric and plot the curve using the polar representation r = r(ϕ). Do the same using
plots[polarplot].

1 x = A+v is the solution of the so-called Gaußian normal equations (ATA)x = AT v. For this value x, the residual ‖Ax−v‖2 becomes minimal.

For rank(A) < m this solution x is not unique. In this case the pseudinverse A+ is defined in another way.
2 Such a mechanism is implemented in many programming languages. This is often more useful than trying to avoid in advance, by various if

constructs, that an error occurs.



c) Use plot again to produce a sequence of plot structures p[i], i = 1, 2, . . ., representing sections of the curve (always
beginning with ϕ = 0 and increasing the upper limit for ϕ from step to step). Then, use display with the option
insequence=true to produce an animated plot (a small video).

Use the plot context menu on top to start the animation and to control it (in particular, the speed of the animation).

d) Compute the arclength of the curve according to the formula∫ ?

ϕ=0

√
r(ϕ)

2
+ r′(ϕ)

2
dϕ .

This integral is not elementary; use evalf(..) or int(...,numeric) to evaluate it numerically. (The correct value is
≈ 9.6884.)

e) Compute the area of the interior of the curve by integrating its polar representation over one of the foils, e.g., the first
one, ∫ ?

ϕ=0

∫ |r(ϕ)|
ρ=0

ρ dρ dϕ .

This integral is elementary. (The correct value for the complete area is π/2.)

In d) and e), check what the correct upper limit of the integral (?) is.

Exercise 9.3. Some more animations. Further tools from the plots package.

a) The function animate can be used to produce videos, i.e., a sequence of plots depending on a parameter. After defining
the corresponding plot structure, rendering of the animation is performed in an interactive way. Consult ? animate (look
at the examples). Use animate to visualize the behavior of the functions

(
1 + x

n

)n
for x ∈ [0, 5] and n = 1, 2, . . . (n is the

parameter for the animation). Also, use an example of your own choice.

b) An animation of the evolution of a function can be generated using animatecurve. Show some nice example.

c) Another way of generating a video is to produce several plot structures and to display them in an animated way, using
display with option insequence=true (see 2 c)). Choose a function f(t) and generate plots on intervals [0, T ] with
increasing values for T . Use the plot option filled=true. Then, use display with option insequence=true to animate
these plots.

This provides a visualization of the behavior of

∫ T

0

f(t) dt with increasing T .

d) Also check animate3d and show some nice example.

Exercise 9.4. Devil’s staircase.

Consider the sequence of functions Dn : [0, 1]→ [0, 1], defined by 3

D0(x) = x, and Dn(x) =


1
2Dn−1(3x), 0 ≤ x < 1

3 ,

1
2 ,

1
3 ≤ x ≤

2
3 ,

1
2

(
1 +Dn−1(3x− 2)

)
, 2

3 < x ≤ 1,

n ≥ 1

a) Implement this sequence of functions in form of a procedure.

b) Play with plot, increase n, and zoom in (i.e., plot over small subintervals of [0, 1]).

c) Design a procedure Devil(x) which exactly evaluates the pointwise limit lim
n→∞

Dn(x) for rational x ∈ [0, 1] ∩Q.

Exercise 9.5. Formatted I/O.

a) Design a procedure which compresses a given matrix of datatype=hfloat using CompressedSparseForm and writes the
compressed data to a text file. Choose an appropriate format.

b) Design a procedure for the reverse operation.

3 These functions are continuous and monotonously increasing on [0, 1]. It can be shown that the pointwise limit Devil(x) := lim
n→∞

Dn(x) is also

a continuous and monotonously increasing.

For rational x, the sequence
(
Dn(x)

)
becomes constant for sufficiently large n.



Exercise 9.6. The package geometry.

Consult the help page of the package geometry. In particular, check how to generate points, triangles, squares, etc., how to
transform (translate, rotate, . . . ) them and how to draw them using draw.

Example: Check what happens here:

with(geometry):

with(plots):

unprotect(D); # unprotect the name D such it can be used to name a corner of the square

point(A,0,0), point(B,0,1), point(C,1,1), point(D,1,0);

square(S,[A,B,C,D]); # constructor generating the object S (a square)

p[1] := draw(S,color=black,axes=none,thickness=3);

p[2] := draw(S,color=green,axes=none,filled=true);

display(p[1],p[2]);

Typical syntax: The first argument is an output parameter.

Warning: Do not use floats for specifying coordinates; rounding errors are in conflict with internal operations of the geometry
package and hinder exact identification of the type of an object. However, you may use algebraic numbers like

√
2 or multiples

of π.

Warning: When performing transformations, e.g. rotation(new object,old object,...), do not try to ‘overwrite’ data struc-
tures, i.e., do not use the same variable for old object and new object. This does not seem to work.

Exercise 9.7. (∗) Drawing a fractal object using recursion, using the package geometry. 4

Design a recursive procedure squares(level,s) which generates a plot of a ‘fractal’ object (see figure). The arguments:

• level specifies the desired number of recursive levels.

• s is a geometry object of type square which is used to start the recursion.

The recursion works in the following way.

squares(level,s)

does the following job:

(i) Draw the square specified by s.

(ii) If level>1 : Perform two recursive calls of squares with level-1 which correspond to two smaller squares, rotated
and sitting on top of the current square. For convenience, use the transformations (rotation etc.) from the geometry

package – this saves much hand work.

Hint: Use global variables p and counter. Before calling squares, these are initialized: p:=’p’, and counter:=0. Within
squares the value counter is increased by 1, the plot of the current square is generated using geometry[draw], and the
resulting plot structure is saved in p[counter]. After calling squares you can render these plots using plots[display].

4 Zählt für 2 Aufgaben; beinhaltet ein bisschen Aufwand für selbständiges Erarbeiten von Teilen des geometry packages.
Die Grafik wurde mit dem Aufruf squares(9,Einheitsquadrat) generiert.


