Übungen zur Vorlesung Computermathematik

Serie 2

Aufgabe 2.1. Write a function which calculates and returns for a vector $x \in \mathbb{C}^{n}$ and some $1 \leq p<\infty$ the ℓ_{p}-norm

$$
\|x\|_{p}:=\left(\sum_{j=1}^{n}\left|x_{j}\right|^{p}\right)^{1 / p} .
$$

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.2. Write a function tensor which returns for $n \in \mathbb{N}$ the chessboard-tensor $B \in$ $\mathbb{N}^{n \times n \times n}$ with

$$
B_{j k \ell}= \begin{cases}0 & \text { if } j+k+\ell \text { even } \\ 1 & \text { if } j+k+\ell \text { odd }\end{cases}
$$

The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.3. Write a function dominant which checks if $A \in \mathbb{C}^{n \times n}$ is diagonal dominant, i.e.,

$$
\sum_{\substack{k=1 \\ k \neq j}}^{n}\left|A_{j k}\right|<\left|A_{j j}\right| \quad \text { for all } j \in\{1, \ldots, n\}
$$

If A is diagonal dominant, the function should return 1 , otherwise 0 . Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.4. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ be a polynomial with coefficient vector $a \in \mathbb{C}^{n+1}$. Write a MATLAB-function which takes a and returns the coefficient vector of the derivative p^{\prime}. The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic. Your function should work for column and row vectors a and should always return a column vector; see, e.g., help reshape Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.5. Let $p(x)=\sum_{j=0}^{n} a_{j} x^{j}$ be a polynomial with coefficient vector $a \in \mathbb{C}^{n+1}$. Let $x=\left(x_{j k}\right) \in \mathbb{C}^{M \times N}$ be a matrix of evaluation points. Write a MATLAB-function which calculates and returns the evaluation matrix $\left(p\left(x_{j k}\right)\right) \in \mathbb{C}^{M \times N}$. Your function should work for
column and row vectors a. The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic. Think about how you can test your code! What are suitable test-examples?
Hint: You can use reshape to reduce the case of a matrix x to the case of a vector. Note that the evaluation points can be complex-valued.

Aufgabe 2.6. Write a MATLAB-function which calculates for given polynomials $p(x)$ and $q(x)$ the result $r(x)=p(x)+q(x)$ and returns the coefficient vector $r \in \mathbb{C}^{n+1} . r(x)$ should be a polynomial of minimal degree, i.e., for the leading coefficient there holds $r_{n+1} \neq 0$. The function has to be implemented in two different ways: First, avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and scalar arithmetic. Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.7. The integral $\int_{a}^{b} f d x$ of a continuous function $f:[a, b] \rightarrow \mathbb{R}$ can be approximated by so called quadrature formulas

$$
\int_{a}^{b} f d x \approx \sum_{j=1}^{n} \omega_{j} f\left(x_{j}\right),
$$

where one fixes some vector $x \in[a, b]^{n}$ with $x_{1}<\cdots<x_{n}$ and approximates the function f by some polynomial $p(x)=\sum_{j=1}^{n} a_{j} x^{j-1}$ of degree $\leq n-1$ with $p\left(x_{j}\right)=f\left(x_{j}\right)$ for all $j=1, \ldots, n$. The weights ω_{j} can be calculated by the assumption

$$
\int_{a}^{b} q d x=\sum_{j=1}^{n} \omega_{j} q\left(x_{j}\right) \quad \text { for all polynomials } q \text { of degree } \leq n-1
$$

This is equivalent to the solution of the linear system

$$
\frac{b^{k+1}}{k+1}-\frac{a^{k+1}}{k+1}=\int_{a}^{b} x^{k} d x=\sum_{j=1}^{n} \omega_{j} x_{j}^{k} \quad \text { für alle } k=0, \ldots, n-1 .
$$

Why is this the case? Write a function integrate which takes the (column or row) vector $x \in[a, b]^{n}$ and the function value vector $f(x)$, and which returns the approximated value of the integral. Therefore, build the linear system as efficiently as possible and solve it with the backslash-operator. With the aid of the resulting vector $\omega \in \mathbb{R}^{n}$ one obtains the approximated integral as scalar product with the vector $f(x)$. Think about how you can test your code! What are suitable test-examples? Avoid loops and use appropriate vector functions and arithmetic instead.

Aufgabe 2.8. Let $L \in \mathbb{R}^{n \times n}$ a lower triangle matrix with entries $\ell_{j j} \neq 0$ for all $j=1, \ldots, n$, i.e., L has the form

$$
L=\left(\begin{array}{ccccc}
\ell_{11} & 0 & \cdots & \cdots & 0 \\
\ell_{21} & \ell_{22} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\ell_{n-1,1} & \ell_{n-1,2} & \cdots & \ell_{n-1, n-1} & 0 \\
\ell_{n 1} & \ell_{n 2} & \cdots & \ell_{n, n-1} & \ell_{n n}
\end{array}\right)
$$

Because of $\left.\operatorname{det}(L)=\prod_{j=1}^{n} \ell_{j j} \neq 0\right), L$ is invertible if and the inverse can be calculated recursively as follows: We write L in the block form

$$
L=\left(\begin{array}{cc}
L_{11} & 0 \\
L_{21} & L_{22}
\end{array}\right)
$$

with $L_{11} \in \mathbb{R}^{p \times p}, L_{21} \in \mathbb{R}^{q \times p}$ and $L_{22} \in \mathbb{R}^{q \times q}$, where $p+q=n$. Usually one chooses $p=n / 2$ for even n and $p=(n-1) / 2$ for odd n. Note that L_{11} und L_{22} are again regular lower triangle matrices. Elementary calculations show that the inverse has the block form

$$
L^{-1}=\left(\begin{array}{cc}
L_{11}^{-1} & 0 \\
-L_{22}^{-1} L_{21} L_{11}^{-1} & L_{22}^{-1}
\end{array}\right) .
$$

Write a function invertL, which L^{-1} recursively calculates the inverse as described. You can test your function with the aid of the function inv. Avoid loops and use appropriate vector functions and arithmetic instead.

