
Winfried Auzinger Sommersemester 2016
Gregor Gantner 9. März 2016
Alexander Haberl
Dirk Praetorius Übungen zur Vorlesung

Computermathematik

Serie 2

Aufgabe 2.1. Write a function which calculates and returns for a vector x ∈ C
n and some

1 ≤ p < ∞ the ℓp-norm

‖x‖p :=
(

n
∑

j=1

|xj |
p
)1/p

.

The function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.2. Write a function tensor which returns for n ∈ N the chessboard-tensor B ∈
N
n×n×n with

Bjkℓ =

{

0 if j + k + ℓ even

1 if j + k + ℓ odd

The function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic.

Aufgabe 2.3. Write a function dominant which checks if A ∈ C
n×n is diagonal dominant,

i.e.,

n
∑

k=1

k 6=j

|Ajk| < |Ajj| for all j ∈ {1, . . . , n}.

If A is diagonal dominant, the function should return 1, otherwise 0. Think about how you can
test your code! What are suitable test-examples?

Aufgabe 2.4. Let p(x) =
∑n

j=0
ajx

j be a polynomial with coefficient vector a ∈ C
n+1. Write

a MATLAB-function which takes a and returns the coefficient vector of the derivative p′. The
function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic. Your function
should work for column and row vectors a and should always return a column vector; see, e.g.,
help reshape Think about how you can test your code! What are suitable test-examples?

Aufgabe 2.5. Let p(x) =
∑n

j=0
ajx

j be a polynomial with coefficient vector a ∈ C
n+1.

Let x = (xjk) ∈ C
M×N be a matrix of evaluation points. Write a MATLAB-function which

calculates and returns the evaluation matrix
(

p(xjk)
)

∈ C
M×N . Your function should work for

column and row vectors a. The function has to be implemented in two different ways: First,
avoid loops and use appropriate vector functions and arithmetic instead; second, use loops and
scalar arithmetic. Think about how you can test your code! What are suitable test-examples?
Hint: You can use reshape to reduce the case of a matrix x to the case of a vector. Note that
the evaluation points can be complex-valued.

Aufgabe 2.6. Write a MATLAB-function which calculates for given polynomials p(x) and
q(x) the result r(x) = p(x) + q(x) and returns the coefficient vector r ∈ C

n+1. r(x) should
be a polynomial of minimal degree, i.e., for the leading coefficient there holds rn+1 6= 0. The
function has to be implemented in two different ways: First, avoid loops and use appropriate
vector functions and arithmetic instead; second, use loops and scalar arithmetic. Think about
how you can test your code! What are suitable test-examples?

Aufgabe 2.7. The integral
∫ b
a f dx of a continuous function f : [a, b] → R can be approximated

by so called quadrature formulas

∫ b

a
f dx ≈

n
∑

j=1

ωjf(xj),

where one fixes some vector x ∈ [a, b]n with x1 < · · · < xn and approximates the function f by
some polynomial p(x) =

∑n
j=1

ajx
j−1 of degree ≤ n− 1 with p(xj) = f(xj) for all j = 1, . . . , n.

The weights ωj can be calculated by the assumption

∫ b

a
q dx =

n
∑

j=1

ωjq(xj) for all polynomials q of degree ≤ n− 1.

This is equivalent to the solution of the linear system

bk+1

k + 1
−

ak+1

k + 1
=

∫ b

a
xk dx =

n
∑

j=1

ωjx
k
j für alle k = 0, . . . , n− 1.

Why is this the case? Write a function integrate which takes the (column or row) vector
x ∈ [a, b]n and the function value vector f(x), and which returns the approximated value of
the integral. Therefore, build the linear system as efficiently as possible and solve it with the
backslash-operator. With the aid of the resulting vector ω ∈ R

n one obtains the approximated
integral as scalar product with the vector f(x). Think about how you can test your code! What
are suitable test-examples? Avoid loops and use appropriate vector functions and arithmetic
instead.

Aufgabe 2.8. Let L ∈ R
n×n a lower triangle matrix with entries ℓjj 6= 0 for all j = 1, . . . , n,

i.e., L has the form

L =

ℓ11 0 · · · · · · 0
ℓ21 ℓ22 0 · · · 0
...

...
. . .

. . .
...

ℓn−1,1 ℓn−1,2 · · · ℓn−1,n−1 0
ℓn1 ℓn2 · · · ℓn,n−1 ℓnn

Because of det(L) =
∏n

j=1
ℓjj 6= 0), L is invertible if and the inverse can be calculated recursively

as follows: We write L in the block form

L =

(

L11 0
L21 L22

)

with L11 ∈ R
p×p, L21 ∈ R

q×p and L22 ∈ R
q×q, where p + q = n. Usually one chooses p = n/2

for even n and p = (n− 1)/2 for odd n. Note that L11 und L22 are again regular lower triangle
matrices. Elementary calculations show that the inverse has the block form

L−1 =

(

L−1

11
0

−L−1

22
L21L

−1

11
L−1

22

)

.

Write a function invertL, which L−1 recursively calculates the inverse as described. You can
test your function with the aid of the function inv. Avoid loops and use appropriate vector
functions and arithmetic instead.

