
Winfried Auzinger Sommersemester 2016
Gregor Gantner 16. März 2016
Alexander Haberl
Dirk Praetorius Übungen zur Vorlesung

Computermathematik

Serie 3

Aufgabe 3.1. Aitken’s ∆2-method is a method for convergence acceleration of sequences. For
an injective sequence (xn) with x = limn→∞ xn one defines

yn := xn −
(xn+1 − xn)

2

xn+2 − 2xn+1 + xn
(1)

Under certain assumptions for the sequence (xn) it then holds

lim
n→∞

x− yn
x− xn

= 0,

i.e., the sequence (yn) converges faster to x than (xn). Write a MATLAB function aitken which
takes a vector x ∈ R

N and returns a vector y ∈ R
N−2. Use suitable loops. Think about how

you can test your code! What happens for a geometric sequence xn := qn with 0 < q < 1?

Aufgabe 3.2. Write an alternative MATLAB function aitken vec which calculates the vector
y ∈ R

N−2 from Aufgabe 3.1 with suitable vector arithmetic instead of loops.

Aufgabe 3.3. Write a MATLAB function diffaitken, which computes the approximation
of the derivative of a function f in a point x through the central difference quotient

Φ(h) =
f(x+ h)− f(x− h)

2h
.

Given the function f , the point x, an initial parameter h0 > 0 and a tolerance τ > 0, the
function returns an approximation of the derivative obtained as follows: For n ≥ 1, compute
hn := 2−(n−1)h0, xn := Φ(hn), and φn defined by

φn :=

{

xn if n = 1, 2,

yn−2 if n ≥ 3,

where, for n ≥ 3, we apply the ∆2-method from Aufgabe 3.1–3.2 (define yn−2 through (1)). The
iteration stops when n ≥ 2 and

|φn − φn−1| ≤

{

τ if |φn| ≤ τ,

τ |φn| else,

and the function returns φn as approximation of the derivative. Think about how you can test
your code!

Aufgabe 3.4. Let f : [a, b] → R be a continuous function. For N ∈ N and xj := a+j (b−a)/N
with j = 0, . . . , N , we define the composite midpoint rule

IN :=
b− a

N

N
∑

j=1

f
(

(xj−1 + xj)/2
)

.

Since IN is a Riemann sum, we know that

lim
N→∞

IN =

∫ b

a
f dx.

For f ∈ C2[a, b], one can even show that

∣

∣

∣

∫ b

a
f dx− IN

∣

∣

∣
= O(N−2).

Write a MATLAB function

int = midpointrule(a,b,f,n)

which, for the sequence N = 2k and k = 0, . . . , n , computes and returns the vector int of
the corresponding values IN . Think about how you can test your code! What are suitable test
examples? Hint: Test your quadrature with polynomials of different degree. Calculate the result
analytically. What do you notice?

Aufgabe 3.5. Modify the function midpointrule from Aufgabe 3.4 in the following way.

• If midpointrule(f,n) is called without the interval boundaries a, b, then
∫ 1
−1 f dx is

calculated.

• The call midpointrule(f,n,a,b) shall return as in Aufgabe 3.4 the vector IN ≈
∫ b
a f dx.

Take care that in the case b < a it holds
∫ b
a f dx = −

∫ a
b f dx. In this case additionally

give a warning.

• In the case midpointrule(f,n,a,b,’nodes’), additionally to the vector int, the vector
nodes of the points xj with j = 0, . . . 2n shall be returned.

Aufgabe 3.6. Alternatively to the bisection method from the lecture one can use the Newton-
method for the calculation of a root of a function f : [a, b] → R. Given an initial value x0 one
inductively defines the sequence (xn): For given xk let xk+1 be the root of the tangent on the
graph of f in the point (xk, f(xk)), i.e. x = xk+1 satisfies 0 = f(xk) + f ′(xk)(x − xk). Solving
for x shows

xk+1 = xk − f(xk)/f
′(xk).

Implement the Newton-method in a function newton(f,fprime,x0,tau) where the iteration is
stopped if

|f ′(xn)| ≤ τ

or

|f(xn)| ≤ τ and |xn − xn−1| ≤

{

τ for |xn| ≤ τ,

τ |xn| else

In each case, return xn as approximation of the root, where in the first case, additionally give
a warning. Beside xn, return the sequence (x0, . . . , xn) of the approximative roots and the
corresponding function values. Test your implementation with the function f(x) = x2+ ex− 2.

Aufgabe 3.7. Think about at least three non-trivial examples to test your implementation
of the Newton-method. Write a MATLAB-function testnewton(f,fprime,x0,tau) to visually
verify your solution. Plot the test function f(x) and the approximation of the root. Take care
for suitable scaling in the plot in order to be able to check your solution as good as possible!
Hint: You can use scatter to plot single points.

Aufgabe 3.8. One possible algorithm for eigenvalue computations is the Power Iteration.
It approximates (under certain assumptions) the eigenvalue λ ∈ R with the greatest absolute
value of a symmetric matrix A ∈ R

n×n as well as the corresponding eigenvector x ∈ R
n. The

algorithm is obtained as follows: Given a vector x(0) ∈ R
n\{0}, e.g., x(0) = (1, . . . , 1) ∈ R

n,
define the sequences

x(k) :=
Ax(k−1)

‖Ax(k−1)‖2
and λk := x(k) ·Ax(k) :=

n
∑

j=1

x
(k)
j (Ax(k))j for k ∈ N,

where ‖y‖2 :=
(
∑n

j=1 y
2
j

)1/2
denotes the Euclidean norm. Then, under certain assumptions,

(λk) converges towards λ, and (x(k)) converges towards an eigenvector associated to λ (in an
appropriate sense). Write a MATLAB function poweriteration, which, given a matrix A, a
tolerance τ and an initial vector x(0), verifies whether the matrix A is symmetric. If this is not
the case, then the function displays an error message and terminates (use error). Otherwise, it
computes (λk) and (x(k)) until

‖Ax(k) − λkx
(k)‖2 ≤ τ and |λk−1 − λk| ≤

{

τ if |λk| ≤ τ,

τ |λk| else,

and returns λk and x(k). Realize the function in an efficient way, i.e., avoid unnecessary computa-
tions (especially of matrix-vector products) and storage of data. Then, compare poweriteration
with the built-in MATLAB function eig. Use the function norm, as well as MATLAB arithme-
tic.

