Übungen zur Vorlesung Computermathematik

Serie 3

Aufgabe 3.1. Aitken's Δ^{2}-method is a method for convergence acceleration of sequences. For an injective sequence (x_{n}) with $x=\lim _{n \rightarrow \infty} x_{n}$ one defines

$$
\begin{equation*}
y_{n}:=x_{n}-\frac{\left(x_{n+1}-x_{n}\right)^{2}}{x_{n+2}-2 x_{n+1}+x_{n}} \tag{1}
\end{equation*}
$$

Under certain assumptions for the sequence $\left(x_{n}\right)$ it then holds

$$
\lim _{n \rightarrow \infty} \frac{x-y_{n}}{x-x_{n}}=0,
$$

i.e., the sequence $\left(y_{n}\right)$ converges faster to x than $\left(x_{n}\right)$. Write a MATLAB function aitken which takes a vector $x \in \mathbb{R}^{N}$ and returns a vector $y \in \mathbb{R}^{N-2}$. Use suitable loops. Think about how you can test your code! What happens for a geometric sequence $x_{n}:=q^{n}$ with $0<q<1$?

Aufgabe 3.2. Write an alternative MATLAB function aitken_vec which calculates the vector $y \in \mathbb{R}^{N-2}$ from Aufgabe 3.1 with suitable vector arithmetic instead of loops.

Aufgabe 3.3. Write a MATLAB function diffaitken, which computes the approximation of the derivative of a function f in a point x through the central difference quotient

$$
\Phi(h)=\frac{f(x+h)-f(x-h)}{2 h} .
$$

Given the function f, the point x, an initial parameter $h_{0}>0$ and a tolerance $\tau>0$, the function returns an approximation of the derivative obtained as follows: For $n \geq 1$, compute $h_{n}:=2^{-(n-1)} h_{0}, x_{n}:=\Phi\left(h_{n}\right)$, and ϕ_{n} defined by

$$
\phi_{n}:= \begin{cases}x_{n} & \text { if } n=1,2, \\ y_{n-2} & \text { if } n \geq 3,\end{cases}
$$

where, for $n \geq 3$, we apply the Δ^{2}-method from Aufgabe 3.1-3.2 (define y_{n-2} through (1)). The iteration stops when $n \geq 2$ and

$$
\left|\phi_{n}-\phi_{n-1}\right| \leq \begin{cases}\tau & \text { if }\left|\phi_{n}\right| \leq \tau, \\ \tau\left|\phi_{n}\right| & \text { else },\end{cases}
$$

and the function returns ϕ_{n} as approximation of the derivative. Think about how you can test your code!

Aufgabe 3.4. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. For $N \in \mathbb{N}$ and $x_{j}:=a+j(b-a) / N$ with $j=0, \ldots, N$, we define the composite midpoint rule

$$
I_{N}:=\frac{b-a}{N} \sum_{j=1}^{N} f\left(\left(x_{j-1}+x_{j}\right) / 2\right) .
$$

Since I_{N} is a Riemann sum, we know that

$$
\lim _{N \rightarrow \infty} I_{N}=\int_{a}^{b} f d x
$$

For $f \in C^{2}[a, b]$, one can even show that

$$
\left|\int_{a}^{b} f d x-I_{N}\right|=\mathcal{O}\left(N^{-2}\right)
$$

Write a MATLAB function

```
int = midpointrule(a,b,f,n)
```

which, for the sequence $N=2^{k}$ and $k=0, \ldots, n$, computes and returns the vector int of the corresponding values I_{N}. Think about how you can test your code! What are suitable test examples? Hint: Test your quadrature with polynomials of different degree. Calculate the result analytically. What do you notice?

Aufgabe 3.5. Modify the function midpointrule from Aufgabe 3.4 in the following way.

- If midpointrule (f, n) is called without the interval boundaries a, b, then $\int_{-1}^{1} f d x$ is calculated.
- The call midpointrule ($\mathrm{f}, \mathrm{n}, \mathrm{a}, \mathrm{b}$) shall return as in Aufgabe 3.4 the vector $I_{N} \approx \int_{a}^{b} f d x$. Take care that in the case $b<a$ it holds $\int_{a}^{b} f d x=-\int_{b}^{a} f d x$. In this case additionally give a warning.
- In the case midpointrule(f, n, a, b, 'nodes'), additionally to the vector int, the vector nodes of the points x_{j} with $j=0, \ldots 2^{n}$ shall be returned.

Aufgabe 3.6. Alternatively to the bisection method from the lecture one can use the Newtonmethod for the calculation of a root of a function $f:[a, b] \rightarrow \mathbb{R}$. Given an initial value x_{0} one inductively defines the sequence $\left(x_{n}\right)$: For given x_{k} let x_{k+1} be the root of the tangent on the graph of f in the point $\left(x_{k}, f\left(x_{k}\right)\right.$), i.e. $x=x_{k+1}$ satisfies $0=f\left(x_{k}\right)+f^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)$. Solving for x shows

$$
x_{k+1}=x_{k}-f\left(x_{k}\right) / f^{\prime}\left(x_{k}\right) .
$$

Implement the Newton-method in a function newton(f,fprime, $x 0$, tau) where the iteration is stopped if

$$
\left|f^{\prime}\left(x_{n}\right)\right| \leq \tau
$$

or

$$
\left|f\left(x_{n}\right)\right| \leq \tau \quad \text { and } \quad\left|x_{n}-x_{n-1}\right| \leq \begin{cases}\tau & \text { for }\left|x_{n}\right| \leq \tau \\ \tau\left|x_{n}\right| & \text { else }\end{cases}
$$

In each case, return x_{n} as approximation of the root, where in the first case, additionally give a warning. Beside x_{n}, return the sequence $\left(x_{0}, \ldots, x_{n}\right)$ of the approximative roots and the corresponding function values. Test your implementation with the function $f(x)=x^{2}+e^{x}-2$.

Aufgabe 3.7. Think about at least three non-trivial examples to test your implementation of the Newton-method. Write a MATLAB-function testnewton($\mathrm{f}, \mathrm{fprime}, \mathrm{x} 0$, tau) to visually verify your solution. Plot the test function $f(x)$ and the approximation of the root. Take care for suitable scaling in the plot in order to be able to check your solution as good as possible! Hint: You can use scatter to plot single points.

Aufgabe 3.8. One possible algorithm for eigenvalue computations is the Power Iteration. It approximates (under certain assumptions) the eigenvalue $\lambda \in \mathbb{R}$ with the greatest absolute value of a symmetric matrix $A \in \mathbb{R}^{n \times n}$ as well as the corresponding eigenvector $x \in \mathbb{R}^{n}$. The algorithm is obtained as follows: Given a vector $x^{(0)} \in \mathbb{R}^{n} \backslash\{0\}$, e.g., $x^{(0)}=(1, \ldots, 1) \in \mathbb{R}^{n}$, define the sequences

$$
x^{(k)}:=\frac{A x^{(k-1)}}{\left\|A x^{(k-1)}\right\|_{2}} \quad \text { and } \quad \lambda_{k}:=x^{(k)} \cdot A x^{(k)}:=\sum_{j=1}^{n} x_{j}^{(k)}\left(A x^{(k)}\right)_{j} \quad \text { for } k \in \mathbb{N} \text {, }
$$

where $\|y\|_{2}:=\left(\sum_{j=1}^{n} y_{j}^{2}\right)^{1 / 2}$ denotes the Euclidean norm. Then, under certain assumptions, $\left(\lambda_{k}\right)$ converges towards λ, and $\left(x^{(k)}\right)$ converges towards an eigenvector associated to λ (in an appropriate sense). Write a MATLAB function poweriteration, which, given a matrix A, a tolerance τ and an initial vector $x^{(0)}$, verifies whether the matrix A is symmetric. If this is not the case, then the function displays an error message and terminates (use error). Otherwise, it computes $\left(\lambda_{k}\right)$ and $\left(x^{(k)}\right)$ until

$$
\left\|A x^{(k)}-\lambda_{k} x^{(k)}\right\|_{2} \leq \tau \quad \text { and } \quad\left|\lambda_{k-1}-\lambda_{k}\right| \leq \begin{cases}\tau & \text { if }\left|\lambda_{k}\right| \leq \tau, \\ \tau\left|\lambda_{k}\right| & \text { else },\end{cases}
$$

and returns λ_{k} and $x^{(k)}$. Realize the function in an efficient way, i.e., avoid unnecessary computations (especially of matrix-vector products) and storage of data. Then, compare poweriteration with the built-in MATLAB function eig. Use the function norm, as well as MATLAB arithmetic.

