
Winfried Auzinger Sommersemester 2016
Gregor Gantner 25. März 2016
Alexander Haberl
Dirk Praetorius Übungen zur Vorlesung

Computermathematik

Serie 4

Aufgabe 4.1. Extend the code of slide 110 by adding the ∆2-method from Aufgabe 1 Übung 3
to improve the convergence behavior of the central and forward difference quotients. Which are
the observed convergence rates? Visualize them appropriately.

Aufgabe 4.2. Write a MATLAB function mergesort and an auxiliary function merge (inclu-
ded in the file mergesort.m) with the following features:
• Given two row vectors with entries sorted into ascending order a ∈ Rm and b ∈ Rn, the
function merge merges them (through a suitable loop) to obtain a row vector c ∈ Rm+n sor-
ted into ascending order, e.g., for a = (1, 3, 3, 4, 7) and b = (1, 2, 3, 8) the function returns
c = (1, 1, 2, 3, 3, 3, 4, 7, 8). The function exploits the fact that the vectors a and b are already
sorted, and therefore must not include any sorting algorithm (or the MATLAB function sort).
• Given a row vector c ∈ RN , the recursive function mergesort returns it sorted into ascending
order. The algorithm should be implemented as follows: If N ≤ 2, then c is manually sorted. If
N > 2, c is halved into two parts, a and b, which are recursively sorted by calling mergesort

to sort a and b, and merge to merge the sorted vectors a and b to build the sorted vector c.

Aufgabe 4.3. Write a MATLAB script, which visualizes the runtime of mergesort for random
vectors x ∈ RN and N = 100 · 2n with n = 0, 1, 2, Devise suitable plots to visualize the
computational cost of your implementation. What is your expectation for a vector of length
2N?

Aufgabe 4.4. The following code computes a sparse matrix A ∈ RN×N (You can download
the code from the COMPMATH webpage).

function A = matrix(N)

x = rand(1,N);

y = rand(1,N);

triangles = delaunay(x,y);

n = size(triangles,1);

A = sparse(N,N);

for i = 1:n

nodes = triangles(i,:);

B = [1 1 1 ; x(nodes) ; y(nodes)];

grad = B \ [0 0 ; 1 0 ; 0 1];

A(nodes,nodes) = A(nodes,nodes) + det(B)*grad*grad’/2;

end

Plot the computational time t(N) over N and visualize the growth t(N) = O(Nα) for N =
100 · 2k and k = 0, 1, 2, Which growth do you see? What is the reason for it? What is the
bottleneck of this implementation? What can be done to improve the runtime behavior? Write
an improved code which leads to a better computational time. Visualize its runtime in the same
plot to show that the improved code is really superior. Which growth do you expect and see for
your improved code? Hint: You might want to have a look at help sparse.

Aufgabe 4.5. Let m,n,N ∈ N. Let I, J, a ∈ RN represent the coordinate format of a sparse
matrix A ∈ Rm×n, i.e., for all k = 1, . . . , N holds Aij = ak with i = Ik, j = Jk. Write a
MATLAB function

[II,JJ,AA] = naive2ccs(I,J,a,m,n)

which returns the corresponding vectors of the CCS format.

Aufgabe 4.6. Given the vectors of the CCS format of a sparse matrix A ∈ Rm×n from the
last exercise, write a MATLAB function

Ax = mvm(II,JJ,AA,m,n,x)

which computes the matrix-vector multiplication b = Ax ∈ Rm for given x ∈ Rn. The complexity
of the code must be O(N). Hint: You can verify your code as follows: Suppose that A is a sparse
matrix (e.g., the triadiagonal matrix from page 124 of the lecture notes). Then, the coordinate
format of A is obtained by [I,J,a] = find(A) in MATLAB. Use your code from Aufgabe 4.5
to compute the vectors of the CCS format and compare the outcome of your function mvm with
the matrix-vector multiplication A*x in MATLAB.

Aufgabe 4.7. Write a function plotPotential, which takes a function f : R2 → R, a domain
[a, b]2 and a step size τ > 0, and plots the projection of f(x, y) onto the 2D plane (i.e., view(2)).
Add a colorbar to the plot. For the visualization, use a tensor grid with step size τ . You
may assume, that the actual implementation of f takes matrices x, y ∈ RM×N and returns a
matrix z ∈ RM×N of the corresponding function values, i.e., zjk = f(xjk, yjk). Optionally, the
function plotPotential takes a parameter n ∈ N. For given n, add n (black or white) contour
lines to the figure. To verify your code, write a MATLAB script which visualizes the potential
f(x, y) = x · exp(−x2 − y2) from the lecture notes.

Aufgabe 4.8. Write a MATLAB function saveMatrix which takes a matrix A ∈ RM×N and
writes it into an ASCII file matrix.dat via fprintf (see also help fopen). Use %1.16e for
fprintf to write the matrix coefficients! (Why does this make sense?) Optionally, the function
takes a string name and writes the matrix to the ASCII file name.dat. To verify your code, write
a MATLAB script which creates a random matrix A ∈ RM×N and writes it to an ASCII file
A.dat. Load the matrix via B = load(’A.dat’) and check whether A and B coincide.

