
Winfried Auzinger Sommersemester 2016
Dirk Praetorius 19. April 2016

Übungsaufgaben zur VU Computermathematik

Serie 6

Einige plot-Befehle und einige weitere Befehle (z.B. piecewise) wurden in der VO noch nicht genauer besprochen.
Dafür werden jeweils Hinweise gegeben. Konsultieren Sie die Maple-Hilfe für genauere Details.

Exercise 6.1: Parametric plots.

a) In spherical coordinates (θ, φ), a parametrization of the unit sphere {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} is
given by

x(θ, φ) = cos θ cosφ

y(θ, φ) = cos θ sinφ

z(θ, φ) = sin θ

where θ = −π
2 . . .

π
2 and φ = −π . . . π.

Use plot3d and play with plot parameters in order to produce a nice plot:

plot3d([x(theta,phi),y(theta,phi),z(theta,phi)],theta=-Pi/2..Pi/2,phi=-Pi..Pi,...,...)

b) Let C be a curve in the (x, y)-plane, specified by two functions x(t) and y(t), where t is a real parameter,
t = a . . . b. You may expect that this can be plotted analogously as in a) using plot in the form

plot([x(t),y(t)],t=a..b,...)

Try out – what happens? Consult the help page for plot to check how to realize such a parametric 2D plot.
Play with plot parameters in order to produce a nice plot. Choose your own functions x(t) and y(t).

c) Combination of a) and b): Assume that two functions φ(t) and θ(t) define a curve in the (θ, φ)-plane. Then,(
x(θ(t), φ(t)), y(θ(t), φ(t)), z(θ(t), φ(t))

)
(with x(θ, φ), y(θ, φ), z(θ, φ) from a)) represents a spatial curve on the unit sphere.

Use plots[spacecurve] to produce a nice plot of such a curve. Play with parameters.

d) Each plot command produces a special plot structure representing the data of the plot. Normally, the plot is
immediately displayed. But you can also store the plot data by assigning them to a variable, e.g. (for two 3D
plots):

p[1] := plot3d(...): p[2]:=spacecurve(...):

Then you may use plots[display] to render the plots together:

plots[display]([p[1],p[2]],...)

Combine a) and c) in this way.

Again, play with plot parameters in display to produce a nice plot.

Hint: You also can manipulate a plot interactively in various ways using the right mouse button or using the
context menu shown on top of the screen when you click into the plot area.

Exercise 6.2: [Graphical] study of a real function.

Consider the real function

f(x) =

√
1−

√
2−
√

3− x
(√

= +
√)

a) f is well-defined for all x such that each
√

- evaluation involved has a nonnegative argument. If you are too
lazy to check the domain of definition of f by hand, use Maple:

Use plot to visualize the function f . Choose the x - range appropriately, then you will immediately see for
what interval x ∈ [a, b] the function f is well-defined.

b) Use display to produce a plot showing the graph of f and its derivatives up to order 3. Do you think this is
a very reasonable way of visualizing these data?

c) For data ranging over several orders of magnitudes it is more reasonable to plot logarithmic values (usually
using log10).

Use plots[logplot] to repeat b). What problem now appears? Suggest a fix for this problem.

Exercise 6.3: Ex. 6.2 continued.

Consider the function f from 6.2.

a) When you plot f you see that it is strictly monotonously decreasing (and therefore injective). Compute f ′ and
use it for a strict proof of this fact. (This involves some manual inspection.)

b) Let [a, b] be the domain of definition of f . Then, the inverse f−1 : f([a, b]) → [a, b] is well-defined. Compute
this inverse and verify that f−1(f(x)) = x indeed holds true.

Hint: Use solve.

c) When you plot f ′′ you see that f has a turning point (Wendepunkt). Compute it using Maple (also its decimal
value) and check that it is indeed a turning point.

d) Check whether Maple is able to integrate the function f .

Exercise 6.4: A polynomial approximation of the exponential function.

We compute a simple polynomial approximation for the exponential function f(x) := ex on the interval [0, ln 2].
For a polynomial p(x) of degree 3,

p(x) = a0 + a1 x+ a2 x
2 + a3 x

3

we require

p(0) = f(0), p′(0) = f ′(0), p(ln 2) = f(ln 2), p′(ln 2) = f ′(ln 2) .

a) Compute the coefficients of p using solve.

b) Check the accuracy of the resulting approximation p(x) ≈ f(x) graphically.

c) As you see, the error p(x)− f(x) is nicely small, negative, and it has a minimum in the interior of the interval
[0, ln 2], and here the absolute approximation error |p(x)− f(x)| becomes maximal. 5

– Use solve to determine the location of this minimum.

– If this does not work, use the numerical solver fsolve. What do you observe?

– You can inform fsolve about an interval where the solution should be found (see ? fsolve). Use this to

determine the location of the minimum, and compute the approximation error p(x)− f(x) at this point.

5 In numerical analysis (interpolation theory) it is shown how the error of such approximations can be estimated theoretically. But
this is not a issue here.

Exercise 6.5: Ex. 6.4 continued.

Outside the interval [0, ln 2], the polynomial p(x) from 6.4 is not a reasonable approximation for f(x) = ex (check
this using plot). A global approximation for ex can be constructed in a modified way: For arbitrary 6 x > 0,
determine k ∈ N such that

x = k ln 2 + r, with r ∈ [0, ln 2) .

Then,

ex = 2k er, and therefore, ex ≈ 2k p(r) .

a) Implement this approximation in form of a procedure q(x) expecting a numerical argument x, using p from 6.4.

Hint: Use evalf and floor, and copy/paste the (numerical) coefficients of p obtained in 6.4 into your proce-
dure.

b) Extend your procedure from a) such that also negative values of x are correctly handled.

Hint: Use if ... else ... end if; observe e−x = 1/ex .

c) In this way we have defined a (numerical) function p(x) ≈ ex for ‘arbitrary’ x.

Check the relative error (p(x)− ex)/ex of this approximation by plotting it, e.g., over the interval [−100, 100].
Try to explain the uniform relative accuracy obtained.

(∗) Let us play a little bit with these functions which are defined via procedures:

d) You may also try to call q from a) with a symbolic argument, q(x), where x has not been assigned a value.

Try this. Can you you differentiate the resulting expression? Can you plot the derivative?

Hint: First try to differentiate the function x*floor(x), plot it, and explain the outcome. See ? floor.

e) Same question as in d) for the extended procedure from b). What do you observe?

Exercise 6.6: Functions defined in a piecewise way.

Let a function f(x) defined in a piecewise manner, e.g.

f(x) :=

−1, x < 0

0, x = 0
x2, x > 0

a) Design a function which, using if ... end if or ‘if‘(...), implements this (or a similar) example.

Can you differentiate or integrate this function using diff, D, or int ?

Can you plot it? If not, try plot(’f(x)’,...)

b) Alternative: Define the same function using the piecewise construct (look at the help page), and try again.
Evaluate its indefinite integral and a definite integral.

c) Assume that g is a given function, X is a strictly monotonically increasing list of numbers representing points
on the real line, and let Y represent a list of function values, with numelems(Y) = numelems(X)-1.

Design a procedure stepfunction(X,Y) which uses the piecewise construct to return the corresponding step
function (Treppenfunktion)

f(x) :=

0, x < x1 (i.e., for x ∈ (−∞, x1))
g(y1), x < x2 (i.e., for x ∈ [x1, x2))
g(y2), x < x3 (i.e., for x ∈ [x2, x3))

...
...

g(yn−1), x < xn (i.e., for x ∈ [xn−1, xn))
0, otherwise (i.e., for x ≥ xn)

(n = numelems(X))

Choose an example and plot the resulting step function.

Hint: Use seq to generate the piecewise construct.

6 In practice, ‘x arbitrary’ means ‘x not too large’. Observe that, for instance, e700 ≈ 10304 which is close to overflow in double
precision arithmetic.

Exercise 6.7: A sequence of functions defined in a recursive way.

a) Functions or procedures can be defined recursively. As an example, we consider the function sequence

f0(x) :=
ex − 1

x
, fn(x) :=

1

x

(
− 1 +

n−1∑
j=0

fj(x)

n− j

)
, n = 1, 2, 3, . . .

Design a function f(x,n) which implements this recursion.

Hint: Use ‘if’.

b) Verify experimentally for n = 0, 1, 2, 3 that

fn(x) = (−1)n
∫ 1

0
e(1−t)x

(
−t
n

)
dt .

Here,(
τ

n

)
=
τ(τ − 1) · · · (τ − n+ 1)

n!
, τ ∈ R, n ∈ N

is the generalized binomial coefficient (binomial(tau,n)), a polynomial of degree n in τ .

Remark/hint: This identity is true for all n ∈ N, but the proof is not so easy.

Use int(...,t=0..1) for evaluating the integrals. For internal implementation reasons concerning binomial,
you have to expand this expression under the integral to make it work (try without and with expand).

c) Realize a version of a) using a procedure instead of a function.

Hint: Here you can use if ... else ... end if.

Exercise 6.8: (∗) A procedure manipulating a list.

(See Exercise 5.5.) Let LL be a list consisting of lists of the same length with entries 0 or 1. For simplicity, you
may assume that the elements in LL are pairwise different (no multiple entries).

• Design a procedure p(...) which scans the list LL and for each element L in LL checks whether some other
element K occurring later in LL together with L forms a twin (see 5.5). In this case, K is removed from the list.
The modified list is returned. Selfies are not removed.

Do not encode istwin directly into your procedure but use a function argument which may also represent some
other relation between two elements L and K. This is more flexible.

Example: p([[0,0,1,0],[1,1,0,0],[1,0,1,1]],istwin) returns [[0,0,1,0],[1,1,0,0]].

Hint: Use two passes – marking twin elements in an appropriate way in the first pass and then building the
modified list in the second pass.

Remark: Many standard list operations (like finding elements, removing double entries, etc., etc.) are implemented
in the package ListTools. But none out of the functions from ListTools seems to be applicable here.

